Math 4650 - Test 2 - Fall 2025

$\underline{\mathbf{Directions}}:$

Show steps for full credit.

Also so I can give you partial credit if needed.

Score			
1		2	
3		A or B	
C or D			
Total			

1. [10 points] Use partial fractions to show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n} = 1$$

In your derivation, give a formula for the k-th partial sum.

- 2. [20 points 10 each]
 - (a) Calculate the value of the series $\sum_{n=3}^{\infty} \left(\frac{2}{3}\right)^n$

(b) Determine if $\sum_{n=1}^{\infty} (-1)^n \frac{2n}{3n+2}$ converges or diverges. Show why.

3. [10 points] Use the $\epsilon - \delta$ definition of limit to prove that $\lim_{x \to 2} x^2 = 4$

(A or B). [10 points] PICK ONE. If you do both, then I will grade A.

A. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at $a \in \mathbb{R}$. Prove that if f(a) > 0, then there exists $\delta > 0$ such that f(x) > 0 for all x where $|x - a| < \delta$.

B. Prove that if $f: D \to \mathbb{R}$ and a is a limit point of D with $\lim_{x \to a} f(x) = L_1$ and $\lim_{x \to a} f(x) = L_2$, then $L_1 = L_2$.

(C or D). [10 points] PICK ONE. If you do both, then I will grade C.

C. Let $f: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$ and $a \in D$. Prove: If f is continuous at a, then $\lim_{n \to \infty} f(x_n) = f(a)$ for every sequence (x_n) contained in D with $x_n \to a$.

D. Use the $\epsilon - \delta$ definition of continuity to prove that $f(x) = x^2 + x$ is continuous at any $a \in \mathbb{R}$.

Extra page if you need it....