Math 4550 - Test 2 - Fall 2025

Name:		

$\underline{\mathbf{Directions}}:$

Show steps for full credit.

Also so I can give you partial credit if needed.

Score							
1		2					
3		4					
A or B		C or D					
Total							

1	[10 :	points -	- 5 each i	Let	$\phi \cdot \mathbb{Z} \rightarrow$	7. h	ne a	homomor	phism	Sup	nose	that	<i>δ</i> (1)	= 4
т.	110	POILIO	o cacii	1	y • 🕮 '	44	, C	110111011101	DIIIDIII.	Dup	PODC	OIICO	φ (\perp	,

(a) Calculate $\phi(3)$.

(b) Calculate $\phi(-1)$

- 2. [10 points 5 each] Let $\phi : \mathbb{Z} \to \mathbb{Z}$ be defined by $\phi(n) = -2n$.
 - (a) Prove that ϕ is a homomorphism.

(b) What is the kernel of ϕ ?

3. [10 points] Find all homomorphisms $\phi: \mathbb{Z}_3 \to \mathbb{Z}_6$

4. [12 points - 3 each] Let $G = \mathbb{Z}_8$ and $H = \langle \overline{4} \rangle = \{ \overline{0}, \overline{4} \}$.

H is a normal subgroup of G. You don't have to check this fact.

(a) List the elements of G/H. How many elements are in G/H?

(b) Find the inverse of $\overline{3} + H$ in G/H.

(c) Find the order of $\overline{2} + H$ in G/H.

(d) Is G/H cyclic? If G/H is cyclic, state a generator.

(A or B). [10 points] **Pick <u>ONE</u>** of the following proofs. Only pick one; if you do both then I will grade A.

A. Let G_1 and G_2 be groups. Let $\phi: G_1 \to G_2$ be a homomorphism. Prove that $\ker(\phi)$ is a subgroup of G_1 .

B. Let G be a group with identity element e. Suppose that |G|=n. Prove that $x^n=e$ for all $x\in G$.

(C or D). [10 points] **Pick <u>ONE</u>** of the following proofs. Only pick one; if you do both then I will grade C.

C. Let G be a group and H be a normal subgroup of G. Prove that if G is cyclic, then G/H is cyclic.

D. Let G_1 and G_2 be groups. Let e_1 and e_2 be the identity elements of G_1 and G_2 respectively. Let $\phi: G_1 \to G_2$ be a homomorphism. Prove that if $\ker(\phi) = \{e_1\}$, then ϕ is one-to-one.

Extra page if you need it....