Math 3450 - Spring 2024 - Test 1

Name:_____

Recall that

$$\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \ldots\}$$
$$\mathbb{Z} = \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$$

Score			
1		2	
3		4	
5		6	
7		Total	

1. [8 points] List all of the elements from the set

$$A = \{2s - 3t \mid s, t \in \mathbb{Z} \text{ and } 1 \le s \le 2 \text{ and } -1 \le t \le 0\}$$

2. [20 points - 4 each] Let $A = \{5, 2, 10, -1, 4, 8, 0\}, B = \{5, 10, -2, \frac{4}{5}, 11, 0\}, C = \{10, 11, 1\}, D = \{10, 2\}, E = \{0, 1, 2\}.$ Compute the following.

(a) $A \cap C$

(b) B - C.

(c) $C \cup D$

(d) $C \times D$

(e) The power set $\mathcal{P}(E)$.

- 3. [10 points 5 each] Explain why each is true or false.
 - (a) <u>True or False?</u> $-2 \equiv 28 \pmod{6}$

(b) <u>True or False?</u> $\overline{1} = \overline{2045}$ in \mathbb{Z}_4

- 4. [10 points] Let $A_n = \{x \in \mathbb{Z} \mid -n \le x \le n\}.$
 - (a) List the elements in the sets A_1 , A_2 , A_3 , and A_4 .

(b) Calculate
$$\bigcap_{n=2}^{\infty} A_n$$
 and $\bigcup_{n=5}^{\infty} A_n$.

5. [10 points]

Pick ONE of the following to prove. Only pick one. If you do both then I will grade (A).

A) Let A, B, and C be sets. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

B. Let A, B, C be sets. Prove that $(A \cap B) - C = (A - C) \cap (B - C)$.

6. [10 points] Pick ONE of the following to prove. Only pick one. If you do both then I will grade (C).

C) Let $S = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if ad = bc. Prove that \sim is an equivalence relation.

D. Consider the set of integers \mathbb{Z} . Let $n \in \mathbb{Z}$ with $n \geq 2$. Given $a, b \in \mathbb{Z}$ define $a \sim b$ to mean that n divides a - b. Prove that \sim is an equivalence relation.

E. Let A and B bet sets. Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

F. Prove that $\{9^n \mid n \in \mathbb{N}\} \subseteq \{3^n \mid n \in \mathbb{N}\}$ but $\{9^n \mid n \in \mathbb{N}\} \neq \{3^n \mid n \in \mathbb{N}\}.$

Extra space if you need it.