Math 3450 - Spring 2024 - Test 1

Name:

Recall that

$$
\begin{gathered}
\mathbb{N}=\{1,2,3,4,5,6,7, \ldots\} \\
\mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
\end{gathered}
$$

Score			
1		2	
3		4	
5		6	
7		Total	

1. [8 points] List all of the elements from the set

$$
A=\{2 s-3 t \mid s, t \in \mathbb{Z} \text { and } 1 \leq s \leq 2 \text { and }-1 \leq t \leq 0\}
$$

2. [20 points - 4 each] Let $A=\{5,2,10,-1,4,8,0\}, B=\left\{5,10,-2, \frac{4}{5}, 11,0\right\}$, $C=\{10,11,1\}, D=\{10,2\}, E=\{0,1,2\}$. Compute the following.
(a) $A \cap C$
(b) $B-C$.
(c) $C \cup D$
(d) $C \times D$
(e) The power set $\mathcal{P}(E)$.
3. [10 points - 5 each] Explain why each is true or false.
(a) True or False? $\quad-2 \equiv 28(\bmod 6)$
(b) True or False? $\overline{1}=\overline{2045}$ in \mathbb{Z}_{4}
4. [10 points] Let $A_{n}=\{x \in \mathbb{Z} \mid-n \leq x \leq n\}$.
(a) List the elements in the sets A_{1}, A_{2}, A_{3}, and A_{4}.
(b) Calculate $\bigcap_{n=2}^{\infty} A_{n}$ and $\bigcup_{n=5}^{\infty} A_{n}$.
5. [10 points]

Pick ONE of the following to prove. Only pick one. If you do both then I will grade (A).
A) Let A, B, and C be sets. Prove that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
B. Let A, B, C be sets. Prove that $(A \cap B)-C=(A-C) \cap(B-C)$.
6. [10 points]

Pick ONE of the following to prove. Only pick one. If you do both then I will grade (C).
C) Let $S=\mathbb{Z} \times(\mathbb{Z}-\{0\})$. Define the relation \sim on S where $(a, b) \sim(c, d)$ if and only if $a d=b c$. Prove that \sim is an equivalence relation.
D. Consider the set of integers \mathbb{Z}. Let $n \in \mathbb{Z}$ with $n \geq 2$. Given $a, b \in \mathbb{Z}$ define $a \sim b$ to mean that n divides $a-b$. Prove that \sim is an equivalence relation.
7. [10 points]

Pick ONE of the following to prove. Only pick one. If you do both then I will grade (E).
E. Let A and B bet sets. Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
F. Prove that $\left\{9^{n} \mid n \in \mathbb{N}\right\} \subseteq\left\{3^{n} \mid n \in \mathbb{N}\right\}$ but $\left\{9^{n} \mid n \in \mathbb{N}\right\} \neq\left\{3^{n} \mid n \in \mathbb{N}\right\}$.

Extra space if you need it.

