Math 2550 - Test 1 - Spring 2024

Name:_____

Directions:

Show steps for full credit.

Also so I can give you partial credit if needed.

Score			
1		2	
3		4	
5		6	
Total			

1. [6 points] List 3 elements from the following set.

$$S = \{ x\langle 2, 2, 0 \rangle + y\langle -1, 1, 0 \rangle \mid x, y \in \mathbb{R} \}$$

2. [9 points - 3 each] Let $\vec{a} = \langle 2, 1, -2 \rangle$, $\vec{b} = \langle 1, 0, 1 \rangle$, $\vec{c} = \langle 1, 1, 1, 1, 1 \rangle$, and $\vec{d} = \langle -1, 2, 3, 2, -1 \rangle$.

- (a) Compute $-\vec{a} + 2\vec{b}$
- (b) Compute the norm/length of \vec{d}
- (c) Compute $\vec{a} \cdot \vec{b}$ and $\vec{c} \cdot \vec{d}$

3. [12 points - 3 each] Let

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 2 \\ 1 & 5 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & 3 \end{pmatrix}$$
$$D = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad E = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad F = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Compute the following if possible. If not possible, explain why. Show intermediate work so I can give you partial credit if needed.

- (a) 2A + B
- (b) *AB*
- (c) *CD*
- (d) E^T and C^T

More space for problem 3...

4. [8 points] Solve the following system.

You must use the Gaussian elimination / row reduction method we used in class to get credit.

5. [6 points] Solve the following system.

6. [6 points] Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3 .

Prove that $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$