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FOR THE INSTRUCTOR TO READ i

For the instructor to read

We should put a section in the front of the book that organizes the
organization of the book. It would be the instructor section that would
have:

– flow chart that shows which sections are prereqs for what sections.
We can start making this now so we don’t have to remember the flow
later.

– main organization and objects in each chapter
– What a Cfu is and how to use it
– Why we have the proofcomment formatting and what it is.
– Applications sections and what they are
– Other things that need to be pointed out.
IDEA: Seperate each of the above into subsections that are labeled

for ease of reading but not shown in the table of contents in the front
of the book.

————————— main organization examples: ———————
——

In a course such as this, the student comes in contact with many
abstract concepts, such as that of a set, a function, and an equivalence
class of an equivalence relation. What is the best way to learn this
material. We have come up with several rules that we want to follow
in this book.

Themes of the book:
1. The book has a few central mathematical objects that are used

throughout the book. 2. Each central mathematical object from theme
#1 must be a fundamental object in mathematics that appears in many
areas of mathematics and its applications. 3. When definitions of
abstract objects such as functions and equivalence relations come up
the book focuses on the central examples. 4. Add more... 5. Add
more...

We chose two central themes for the book: number theory / abstract
algebra, and analysis / topology.

For number theory and abstract algebra, the main examples are the
integers modulo n, properties of the prime numbers, etc. Some appli-
cations sections include sections on generating the pythagorean triples,
the group of primitive pythagorean triples, the Guassian integers with
an application to sums of squares.

For analysis / topology, we study the real line and real plane. Fill
this part in .... distance function? open sets/closed sets?

See the flow chart in Figure ...
The chapter contents are layed out as follows.



FOR THE INSTRUCTOR TO READ ii

Ch. 1 -
Ch. 2 -
Ch. 3 - This is really where the nuts and bolts of the course start.

We go through the kinds of proofs that one encounters in math texts,
such as direct proof, contradiction, etc. We discuss the divisibility
properties of the integers and focus on congruence modulo n. Prime
numbers, irrational numbers, and the greatest common divisor are are
introduced in this chapter and are used throughout the text. Powerful
theorems about prime numbers, such as Theorem and Theorem on page
and page , are proven in this chapter. Their first application appears
in the proof that

√
3 is irrational.

Ch. 4 - We introduce the methods of induction. We prove two big
theorems from number theory: There are an infinite number of primes,
and every integer can be factored uniquely into a product of primes.

Ch. 5 - sets
Ch. 6 - relations. We focus on equivalence relations and equivalence

classes because it is the most important topic in the chapter. One
main example that is used throughout the remainder of the book is
the integers modulo n. We especially use the integers modulo n in the
functions chapter.

Ch. 7 - functions. Functions are one of the most important ob-
jects in mathematics. In illustrating concepts such as one-to-one, onto,
image, and inverse image we use examples from our central objects: in-
tegers modulo n, integers, whatever else we add in this chapter. There
are several examples of functions between the integers modulo n that
are used in group theory and number theory. Put what the real number
ones will be if we add more or replace some of the number theory.

... ... ... ...
Here are several ways to navigate through the book:
Way 1: Put a sequence of sections here.
Way 2: Put a sequence of sections here.
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Chapter 1
Introduction

1.1. Welcome to mathematics!

We expect that most people reading this book will be students
taking a transitional “proofs” course; that most such students are math
majors; and that this is the first course exclusively for, or at least
dominated by, math majors. So we feel that this is a great opportunity
to welcome and introduce you to the wide and wonderful world of
mathematics.

As you have probably heard, lower-division math courses such as
Calculus tend to be heavily computational, whereas upper-division
math courses are usually more theoretical and abstract. The primary
purpose of this text is to help you make that transition.

In this first section, though, we’d like you to tell you about some
fun and useful pieces of information that together comprise a significant
portion of “math culture.” Your professors probably know most of this,
plus lots more that we overlooked, but as an early-career math major,
chances are that you have not yet been clued in.

Though many of the items below apply throughout the globe, some
pertain only to the United States, where the authors of this book reside.
Moreover, the longer it’s been since this section was written, the more
likely it is to be obsolete. An internet search should provide information
that is up-to-date and relevant to countries outside the US. But now
you’ll know some things you can look for!

Jobs in math: Math majors are often not aware of job opportunities
outside of teaching that make use of their academic training. Such ca-
reer paths abound, however. Moreover, they are not just jobs; they are

1
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highly desirable jobs. In the year 2014, CareerCast.com rated “math-
ematician” as the very best in a ranking of two hundred different jobs.
Criteria included work environment, income, stress level, etc. Many
other highly rated jobs were math-related, such as actuary and statis-
tician, both of which were in the top five.

Math-intensive vocations include, but are by no means limited to,
the following: actuary, cryptologist, economist, environmental mathe-
matician, geodesist, inventory strategist, operations research analyst,
staff systems air traffic control analyst, and statistician.

For more information, you may want to visit the Mathematical
Association of America’s Career Profiles website at:

www.maa.org/careers/career-profiles

Teaching math: Teaching, of course, remains a way to make use of a
degree in mathematics. One can teach math at the middle school, high
school, two-year college, or four-year college level. Generally speaking,
these different levels have different minimum requirements for employ-
ment.

Each state sets its own minimum requirements for becoming a pub-
lic middle school or public high school mathematics teacher. Typi-
cal requirements include obtaining a bachelor’s degree in mathematics,
passing a basic skills test, and successfully completing an approved
teacher education program. To do internet searches to find out specific
requirements for your state, try the search terms “teaching credential”
or “teaching certificate.” The Math Department professors and/or your
school’s career center may be able to guide you here as well. The re-
quirements to teach math at a private middle school or high school
vary; often, a teaching credential is not required.

Obtaining a full-time position teaching math at a two-year (commu-
nity) college often requires, as a minimum, a master’s degree in math-
ematics, though some schools require only a bachelor’s degree. Many
two-year colleges specifically require a master’s degree in mathemat-
ics as opposed to mathematics education. Some graduate programs in
mathematics do not offer anything higher than a master’s degree, and
these programs are often designed primarily for students who intend to
become math professors at two-year colleges. In contrast, other grad-
uate programs in mathematics, usually at top research schools, award
PhDs as their main function but also give master’s degrees to students
who successfully complete part but not all of the PhD program. The
job market for full-time faculty positions in math at two-year colleges
varies over time and from region to region but generally speaking is
quite competitive.
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Becoming a full-time professor of mathematics at a four-year college
or university requires a PhD in the field, at a minimum. Tenure-track
faculty positions in mathematics are highly sought-after and extremely
competitive, especially at top research universities. Frequently, to be
offered such a job, one must first have completed one or more temporary
postdoctoral positions in order to have built up a sufficient track record
in teaching and research.

At both two-year and four-year colleges, full-time professors can
get tenure (and the job security that comes with it). Adjunct faculty,
however, are assigned classes from term to term on an as-needed basis
and cannot receive tenure.

Graduate school : Generally speaking, there are two types of graduate
programs in mathematics: those that offer only master’s degrees, and
those that grant PhDs.

Many students who enroll in masters’ programs in mathematics do
so to qualify to teach math at a two-year college. Sometimes students
do so to prepare for work in business, industry, or government, or to
prepare more thoroughly for a PhD program. Typically, it takes about
two years to complete a master’s program in mathematics. Require-
ments generally focus on completion of coursework that is similar to
upper-division undergraduate coursework. Many masters’ programs
have both thesis and non-thesis options.

PhD programs in mathematics generally cater to students who wish
to become full-time professors at four-year colleges and universities,
though some students there intend to go on to work in business, indus-
try, or government. Obtaining a PhD in math typically takes five to
six years. Often, the student receives a teaching assistantship and/or
stipend during that time so that there is little to no tuition cost. The
first two years usually focus on coursework, after which one must pass
qualifying exams. From that point on, one works with an adviser to
do original research, culminating in a dissertation. Some students en-
ter PhD programs with a set idea of the area of math they want to
do research in, but many do not. When selecting PhD programs to
apply to (or to attend, if accepted), one may want to ask some of the
following questions. What percentage of students pass the qualifying
exams? What percentage of students graduate? Of those who have
graduated recently, where are they now? Which faculty members are
potential dissertation advisers? We cannot overemphasize the impor-
tance of selecting a good adviser. We recommend looking for someone
who has tenure, who meets regularly with his or her students, who
is well-regarded in the field, who gets along well with students, who
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makes an effort to help his or her students find employment after grad-
uation, and who does not plan to retire within the next five years. Most
schools require applicants to take both the GRE General Test and the
GRE Subject Test. The GRE Subject Test in mathematics is quite
difficult, and we encourage anyone who plans to take it to budget a
considerable amount of time well in advance to study for it. The web-
site www.phds.org contains a great deal of useful information about
PhD programs.

The two main branches of mathematics are applied math (in which
the one uses math to solve problems that emanate from the real world)
and pure math (in which one engages in problem-solving for its own
sake). At some schools, applied math and pure math are housed in
different departments. In that case, one must decide which department
to apply to, or whether to apply to both. Statistics, too, is often an
independent department.

For all types of graduate programs, the AMS website on applying
to grad school contains a large amount of practical information and
advice:

www.ams.org/profession/career-info/grad-school/grad-school

Branches of math: One public misconception about math is that it
consists entirely of a fixed collection of established techniques. In fact,
new discoveries in math are being made every day. To push the bound-
aries of human knowledge a little further, researchers must specialize
in a particular field, or, less commonly, lay the foundations for a new
one. So mathematics, like most mature areas of study, branches out
into sub-disciplines, and sub-sub-disciplines, and so on. Your upper-
division electives begin to hint at the breathtaking diversity of topics.

The first main division occurs when mathematics bifurcates into
pure mathematics and applied mathematics. The line between pure
math and applied math is fuzzy at best, but roughly speaking, pure
math includes logic, set theory, combinatorics, graph theory, algebra,
number theory, algebraic geometry, analysis, complex analysis, har-
monic analysis, differential geometry, algebraic topology, and many
other fields, while applied math includes probability theory, numerical
analysis, operations research, game theory, systems control theory, and
many other fields. Other related areas include math history, philoso-
phy of mathematics, and math education. One widely used organiza-
tional scheme is the Mathematics Subject Classification (MSC); it lists
sixty-four different disciplines within mathematics, each with various
sub-disciplines. There is active ongoing research in all of these fields!
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Undergraduate research: A few years ago, a math major wrote on an
online forum, “I have not met any other students doing undergraduate
math research and my current feeling is that many or all the problems
in math are far beyond my ability to research them.” Not true! While
advanced research does indeed require specialized training, there are
plenty of unsolved questions an undergraduate math major can tackle.
College students routinely prove new theorems, publish their results in
peer-reviewed journals, and present their findings at conferences.

What’s more, there are plenty of programs, usually in the summer,
to guide undergraduates through the process of doing original research
in math. Many of these programs go by the name Research Experience
for Undergraduates (REU). Visit

www.ams.org/programs/students/undergrad/emp-reu

for a listing of these programs. As of May 2014, there were over one
hundred REU programs at universities throughout the United States.
The National Science Foundation, which funds REU sites, describes a
typical REU experience as follows. “An REU Site consists of a group of
ten or so undergraduates who work in the research programs of the host
institution. Each student is associated with a specific research project,
where he/she works closely with the faculty and other researchers. Stu-
dents are granted stipends and, in many cases, assistance with housing
and travel.” Application deadlines for REUs usually occur in February
or March. There are many other programs out there that are similar
to REUs; you can find them by doing an internet search for “under-
graduate math research.”

Some professors do research with undergraduate students during
the academic year. If you’re interested, ask your favorite math profes-
sors about how to get started with your own project.

Competitions : There are several math competitions for undergraduate
college students. The William Lowell Putnam Mathematical Competi-
tion, commonly known as the Putnam Exam, is a well-known national
contest. Students taking the Putnam Exam spend six hours trying
to solve twelve extremely difficult math problems. Another contest is
the Mathematical Contest in Modeling (MCM), whose website states
that it “challenges teams of students to clarify, analyze, and propose
solutions to open-ended problems.”

Honorary societies : Undergraduate math majors may be eligible for
one of the national honorary societies that seek to promote mathe-
matics. These include Pi Mu Epsilon (PME) and Kappa Mu Epsilon
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(KME). Both groups publish journals and host events. PME’s annual
conference is held in conjunction with MathFest.

Organizations : Many organizations in the United States and through-
out the world support the mathematical community in various ways.
The American Mathematical Society (AMS) focuses on research and
scholarship. The Mathematical Association of America (MAA) states
that its mission is “to advance the mathematical sciences, especially at
the collegiate level.” The Society for Industrial and Applied Mathe-
matics (SIAM) seeks to promote cooperation between mathematicians
and those in science and industry. The National Council of Teachers
of Mathematics (NCTM) describes itself as “the public voice of math-
ematics education.” Several societies strive to achieve equal opportu-
nity for underrepresented groups in the mathematical sciences. These
include the Association for Women in Mathematics (AWM), the Na-
tional Association of Mathematicians (NAM), the Benjamin Banneker
Association (BBA), and TODOS: Mathematics for ALL.

Conferences : We strongly encourage you to attend a conference at
some point; it’s a great way to meet other people who share your pas-
sion for mathematics and to find out about new discoveries being made.
Most of the organizations listed above host periodic conferences. The
largest one is the Joint Mathematics Meetings (JMM), hosted annually
by both the AMS and MAA (hence the name) in early January. The
location varies. JMM features an extraordinarily large number and
vast range of talks, from fun and engaging general audience presenta-
tions to highly technical sessions on specialized topics. Undergraduate
students, graduate students, and faculty alike all present there. Other
activities of interest include a Mathematical Art Exhibit and a Grad-
uate Student Fair. The MAA also hosts another annual conference in
the summer called MathFest; in accordance with the MAA’s mission,
it focuses primarily on undergraduate mathematics. Like JMM, Math-
Fest is held in a different city every year. Both the AMS and the MAA
have regional sections throughout the United States that hold regular
meetings. In addition, the MAA sponsors several regional conferences
specifically for undergraduates; for more informtion, see:

www.maa.org/programs/maa-grants/RUMC

These are just a handful of the countless math conferences that
take place every year. With an internet search for “mathematics con-
ferences,” you will find many more.
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Funding to cover the costs of attending a conference (registration,
travel, lodging, etc.) is often available, through the organization host-
ing the conference or through your school. Frequently, grants are open
only to students presenting research results. Deadlines typically occur
many months in advance, so plan ahead.

Journals, articles, and databases : When a mathematician proves a sig-
nificant result, he or she then usually attempts to publish it in a peer-
reviewed journal. By publishing an article, the journal in effect puts
its stamp of approval on it, verifying that the content is significant,
well-written, and apparently correct. There are quite a few journals
dedicated to mathematics; in the year 2010, the Australian Research
Council ranked over 20,000 of them. Some, such as Ergodic Theory
and Dynamical Systems and the Journal of Combinatorial Optimiza-
tion focus on specific fields; others, such as Acta Mathematica and
Annals of Mathematics (two of the oldest and most highly respected
journals), cover all fields of mathematics. Some journals publish only
articles by undergraduate authors or with student co-authors; these in-
clude Involve, the Rose-Hulman Institute of Technology Undergraduate
Mathematics Journal, and SIAM Undergraduate Research Online. A
few publications contain articles of general interest that do not require
advanced training in a specific subfield. The American Mathemati-
cal Monthly, Notices, College Mathematics Journal, and others all fall
into this category. In these journals, some articles detail new findings,
whereas some are expository articles that seek to more clearly explain
established results, or to put them in a new light.

With so many journals, how do you find the articles that are rel-
evant to your research topic? The best way is to search a journal
database. By far, the most widely used database in mathematics is
MathSciNet, located online at 〈www.ams.org/mathscinet〉. You need
a subscription to access MathSciNet. Your school library may well have
a subscription, so ask a librarian about this.

It is by no means unusual for a delay of several years to occur
between the time an article is first written and submitted to a journal,
and the time it finally appears in print. Such an article—one that
is written but not yet published in a journal—is called a “preprint.”
Authors sometimes post preprints online, either on their own website,
or on a preprint server such as arXiv 〈www.arxiv.org〉. If you want to
get a sense of how much new mathematics is being done all the time,
click the link for “new” under the heading “Mathematics” on arXiv.
On the day this sentence was written (Tuesday, May 20, 2014), 331
articles had been posted. How many were posted today?
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Producing mathematical symbols : There are various ways to use a com-
puter to write mathematical expressions. Microsoft Word, for exam-
ple, has a user-friendly feature called Equation Editor for this purpose.
For a professional-quality end product, mathematicians generally use
a document preparation system such as LaTeX. The TeX Users Group
〈tug.org〉 provides information on using and getting started with La-
TeX. Moreover, it is available for free online. However, it takes an
initial investment of time to learn LaTeX, because it uses special com-
mands much like a programming language. To produce

∫∞
0

log x
x2+1

dx, for
example, one enters \(\int 0̂ {\infty}\frac{\log x}{x̂ 2+1}\;dx\).

Online resources : In the internet age, one can routinely find answers
to the most abstruse questions with just a few keystrokes. We list here
several websites that we’ve found useful. Mathematics Stack Exchange
〈math.stackexchange.com〉 describes itself as “a question and answer
site for people studying math at any level and professionals in related
fields.” MathWorld 〈mathworld.wolfram.com〉 is a Wikipedia-like on-
line encyclopedia dedicated exclusively to mathematics. Ask a Topolo-
gist 〈at.yorku.ca/cgi-bin/bbqa〉, another question-and-answer site,
contains forums concentrating on calculus, algebra, analysis, topol-
ogy, and algebraic topology. The On-Line Encyclopedia of Integer
Sequences 〈at.yorku.ca/cgi-bin/bbqa〉 allows users to search for se-
quences of integers, given a portion of the sequence; if you have the
terms 1, 3, 4, 7, 6, 12 and want to know what comes next, this is the
place to go.

Computational software: Many mathematicians, especially in applied
fields, make use of software that can perform tedious calculations with
astonishing speed and accuracy. Examples include Mathematica, Maple,
and Matlab. Many of these packages can do quite a bit more than a sci-
entific calculator; they can compute integrals, find inverses of matrices,
graph in three dimensions, and much more. If you ask Mathemat-
ica to compute the infinite sum

∑∞
n=1

1
n2 , for example, it will not give

you a numerical approximation; rather, it will find the exact answer,
which is π2/6. The mathematical software system Sage, available at
〈www.sagemath.org〉, is free and open-source.

For more information: The American Mathematical Society hosts a
website full of the sort of information we’ve presented in this section.
The page is entitled “Undergraduate Mathematics Majors” and can be
found at:

www.ams.org/programs/students/undergrad/undergrad
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1.2. What are proofs, and why do we do them?

Consider the following classic logic puzzle. Three contestants com-
pete for prizes on a game show. The emcee shows them five hats, three
of them black, the other two white. He tells them that he will put one
of those hats on each of their heads and discard the remaining two.
Each contestant’s task will be to determine what color hat he or she
is wearing. The emcee then seats the three players in three chairs ar-
ranged one behind the other, blindfolds each contestant, puts one hat
on each player, moves the other two hats out of sight, and removes the
blindfolds. The first contestant, seated at the rear, can see the hats on
the heads of the other two. The emcee asks Contestant #1 what color
hat she is wearing, but she says, “I don’t know.” Now the emcee puts
the same question to the player seated in the middle, who can see only
the hat directly in front of him. This contestant, too, states that he is
unable to determine his own hat color. At that point, the third and
final contestant, who is unable to see any hat whatsoever, exclaims, “I
know what color my hat is!” What color is Contestant #3’s hat, and
how did she figure it out?

If you want to work the solution out for yourself—as any self-
respecting math person should want to do—then close this book now
and don’t look at the next paragraph until you’ve got it.

OK, here’s how she did it. Imagine that the first contestant looked
up and saw two white hats. She would then have been able to deduce
that she herself was wearing a black hat. But she did not do so. The
other two players now know that at least one of them is wearing a black
hat. So had Contestant #2 seen a white hat, he would have known
that he must have been the one wearing a black hat. However, he,
too, could not say with certitude whether his hat was black or white.
Now the final player knows that she is not wearing a white hat, and
she therefore correctly declares that she has a black hat atop her head,
whereupon she wins, let’s say, a trillion dollars.

The argument in the preceding paragraph is a mathematical proof.
We began with a set of premises (how many hats of each color, who can
see which hats, etc.). From there, we constructed an unbroken chain
of logical steps that culminated in a final conclusion, namely, that the
third player’s hat was black. So long as the premises and the logic were
correct, we can be certain that the conclusion is correct, too.

Very few mathematicians study hat color theory. Every mathe-
matician, however, writes proofs. In this book, we will introduce you
to the basic objects that mathematicians do use in their research, as
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well as techniques for proving statements about them. From Calculus
and other classes, you already have some familiarity with many of these
objects, such as functions and sets. Now, we will go back to square one
and revisit them, this time with absolute precision and with a com-
pletely new focus: not on performing computations, but on correctly
writing true statements and making logical inferences.

When you put the last piece of a jigsaw puzzle into its proper place,
you may experience a feeling of great satisfaction. You may feel sim-
ilarly satisfied by the proof that the third player’s hat is black, par-
ticularly if you figured it out yourself. Every part of the logic meshes
just so with every other part, with no parts left over, and together they
eliminate all doubt that the conclusion is correct. To varying degrees,
every mathematical proof produces this feeling of satisfaction. When a
sequence of logical steps reaches a conclusion with surprising efficiency,
mathematicians call it “elegant” or “beautiful.” Public perception to
the contrary, tedious computations are not what mathematics is all
about. Rather, putting logical pieces together to form a beautiful,
elegant proof is the heart and soul of the subject.

If the scenario described in the hat puzzle took place on an actual
game show, the third contestant could not have been completely con-
vinced of her answer. The second contestant, for example, might have
seen a white hat but been unable to reason his way to the solution. The
first contestant may have been blinded by the television studio’s lights
and thus unable to see the other two players’ hats. The same issue
affects any application of mathematics to the real world. A chemist
may use math to draw conclusions in a scientific inquiry but cannot be
certain that her lab is free from all contaminants. A social psychologist
may use a mathematical theorem when analyzing data from an experi-
ment but may worry that some small difference in conditions may have
subtly affected the subjects’ responses. A team of Wall Street analysts
may solve differential equations to predict market behavior but can
never be sure that their underlying assumptions are valid. The great
physicist Albert Einstein put it this way: “As far as the laws of math-
ematics refer to reality, they are not certain; and as far as they are
certain, they do not refer to reality.” Those who employ math in sci-
ence, business, industry, and government must expend time and effort
mitigating the inherent tentativeness of the non-mathematical aspects
of their work. But the validity of math itself causes no such anxiety.
So there is a practical as well as an aesthetic value to the sureness that
mathematics provides.

One time, two of the authors of this book were talking with a
well-known marine biologist about open problems in mathematics, i.e.,
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things we still don’t know. We gave the example of Goldbach’s conjec-
ture, which surmises that every even number greater than 2 is a sum of
two prime numbers. (When mathematicians suspect but cannot prove
that a statement is true, we call it a “conjecture.” Goldbach is the last
name of the person who made this conjecture.) For example, the even
number 106 equals 47 plus 59, both of which are prime. Though this
problem has been around since the year 1742, no one has yet been able
to prove or disprove it. We told the biologist that the conjecture has
been verified by computer for all even numbers up to four quintillion,
that is, 4× 1018 = 4, 000, 000, 000, 000, 000, 000. He replied, “Isn’t that
good enough?” In science, experimental evidence that backs up a hy-
pothesis four quintillion times over is more than good enough. How
many whales of a particular species does a biologist need to observe,
after all, before drawing general conclusions about the behavior of that
species? But in math, we deal with the infinite. Yes, Goldbach’s con-
jecture is true for the first several quintillion even numbers. But think
about this: How many even numbers are there that we have not checked
yet? What percentage of all even numbers have we looked at so far?
For all we know, the smallest counterexample may be on the order of
a googol (10100) or a googolplex (10googol) or Graham’s number (look it
up—it’s much bigger than those other two). Computing examples one
at a time, no matter how many, will never convince us that Goldbach’s
conjecture holds for all even numbers. If the conjecture is indeed true,
then to be certain of it, we will need a proof.

Indeed, mathematicians have oftentimes made conjectures backed
by substantial numerical evidence that turned out later to be false.
One famous case is that of Euler’s sum-of-powers conjecture. The great
mathematician Leonhard Euler speculated in the year 1769 that a kth
power of an integer cannot be written as a sum of more than one but
fewer than k positive integers, each of which is a kth power. In the
year 1988, the smallest counterexample for k = 4 was found:

958004 + 2175194 + 4145604 = 4224814.

By contrast, it is impossible to find positive integers a, b, c such that
a3 + b3 = c3. How can we be so sure? As we just pointed out, checking
lots of examples will not persuade us. But we know for a fact that no
such a, b, c exist because in the year 1770, Euler gave a proof.

So proofs provide certainty. But they serve another purpose as well.
For one does not always have a conjecture to work with. In the hat
puzzle, Contestant #3’s thought process did not begin with the notion
that she was wearing a black hat, followed by an attempt to prove
that fact. Not at all! Instead, she simply made a sequence of logical



1. INTRODUCTION 12

inferences, based on the available information, that led to the correct
conclusion. The process of proving led to the solution. This situation
is common in mathematics. So deductive reasoning not only verifies
true statements, it also sometimes helps us discover them.

In math, you cannot determine whether a statement is true unless it
is written with the utmost precision and a total lack of ambiguity. For
example, consider the sequence 1/n, whose terms are 1, 1/2, 1/3, . . . .
In Calculus, you learned that the limit of this sequence is 0. You may
have been told that that’s because the terms “get closer and closer”
to 0. Isn’t it also true that the terms get closer and closer to −1?
So maybe −1 is also the limit of this sequence? No, −1 is not the
limit; the limit is 0. The problem is that the phrase “getting closer
and closer” is not sufficiently precise. (We learned about this example
from a talk given by math education expert Guershon Harel.) A big
part of this course will be learning to write mathematical statements
in such a way that anyone who reads them will interpret them exactly
as you intended.

Rigorous proof first developed mainly in ancient Greece. The so-
called “axiomatic method” we use today, where we begin with clearly
spelled-out assumptions (axioms) from which we make logical deduc-
tions, was introduced by Euclid around 300 BCE. This way of thinking
has been extraordinarily influential throughout history, and not just
in mathematics. The structure of the Declaration of Independence,
for example, from the premises that begin with “We hold these truths
to be self-evident . . .” to the conclusion introduced with the word
“therefore,” is modelled after a Euclidean-style proof.

In the fifth century BCE, the rebuilding of the Persian Royal Road
significantly reduced travel time across the empire. A few centuries
later, according to a legend, King Ptolemy I attempted to learn geom-
etry from Euclid’s treatise Elements but gave up because he found it
too difficult. Ptolemy summoned Euclid and asked him if there was
an easier way to learn the material. Referring to the great streamlined
Persian superhighway, Euclid replied, “Sire, there is no Royal Road to
geometry.”

Over the next few months, you will feel the king’s pain. (His Royal
Pain, you might say.) Many students make their way through algebra,
trigonometry, and calculus by finding and mimicking examples from
the textbook. That approach will not work in this class. You will need
to learn a new way to learn mathematics. Rather than follow a recipe,
you will need to forge your own path, given only a starting point and a
desired ending place, all the while scrupulously following the rigid rules
of the game. It’s not easy. There is no royal road. Frequently, despite
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your best efforts, you will have no idea how to proceed, and this can be
excruciatingly aggravating. It’s also a completely normal part of learn-
ing. One of our professors used to say, “If you’re not frustrated, then
you’re not working hard enough.” Athletes and musicians must first
do endless drills in order to learn to play well. Likewise, you will need
to complete a giant pile of exercises to learn this material. Each one
will be a struggle. For athletes, the hard work pays off when they make
spectacular plays in the game. For musicians, creating wonderful music
makes worthwhile the vexation of a thousand hours of rehearsal. For
you, we hope that the reward comes in the form of immense fulfillment
when you write your very own exquisitely crafted, elegant, beautiful
proofs.



Part 1

Basics



Chapter 2
Basics of sets

In mathematics we use sets to construct or organize mathematical
objects. For example, suppose you had the three numbers 2, 3, and 5
and you wanted to put them together into a collection because they
had a property that you wanted to study—in this case, these three
numbers are the first three prime numbers. You would do this with a
set. The set containing 2, 3, and 5 is notated as {2, 3, 5}.

Virtually every mathematical object that you know can be con-
structed using a set: numbers, functions, etc. For example, you can
build the function y = x2 using sets. (See the discussion in ??????????
if you are interested.) Even the numbers 3 and say 1, 000 can be made
out of sets. See ????? for more details on this topic.

Before we begin to learn about logic and proofs we first need some
basic ideas about sets. We give a brief introduction to sets in this
chapter. In Chapter 6 we study them in more detail.

2.1. Beginning to work with sets

Informal Definition 2.1. A set is a collection of objects. The
objects in a set are called the elements, or members, of the set. If S
is a set and x is an element of S, then we write x ∈ S. If x is not an
element of S, then we write x 6∈ S. Two sets are equal if they contain
the same elements.

Example 2.2. One way to specify a set is to list its elements and
put curly braces around them. For example, let S = {1, 15, 0}. Then
S is the set with the three elements 1, 15, and 0. We write 1 ∈ S,

15
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Figure 1. A picture of the set {1, 15, 0} from Example 2.2
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15 ∈ S, and 0 ∈ S. Note that −1 6∈ S because −1 is not listed as an
element of S. One way to visualize a set as a closed curve with dots
(elements) inside it, as in Figure 1.

Too Much Information 2.3. We often say “x is in S” or “S
contains x” to mean “x ∈ S.” For example, in Example 2.2 we can say
that “15 is in S.” We can also say “S contains 0.”

Too Much Information 2.4. Notice that we defined a set as a
“collection of objects”. What is a “collection of objects” ? What does
that mean? We have a sense of what it means. You take a bunch
of “objects” and group them together. When you want to define a
new mathematical object you have to start somewhere. You either (a)
define it in terms of some other mathematical object that you already
know or (b) create a new object. How do you create a new object?
In the end you have to start with some assumption or given that is
“understood.” This is called an axiom or assumption in mathematics.
In this book we are taking the concept of a set as a starting point.
One can go further and define more formally what a set is, but this is
unnecessary at this level.

We would like to point out that our definition of a set actually gets
you into trouble. It is too general, and allows you to create “collections
of objects” that bring up logical contradictions such as Russell’s para-
dox. See ????? for more information on Russell’s paradox. However,
we will never see any of these contradictions in this book because we
won’t construct any wacky sets like the one from Russell’s paradox.

Too Much Information 2.5. There are two facts about sets that
are important to understand.

• Sets cannot have duplicate elements. For example, {1, 1, 2}
is not a set. When someone writes this set they really mean
{1, 2}.
• Order doesn’t matter in a set. For example, {1, 10,−3}, {10,−3, 1},

and {−3, 10, 1} are all the same set.

Informal Definition 2.6. The set of natural numbers is the
set whose elements are all the positive whole numbers. We denote the
set of natural numbers by N. Thus

N = {1, 2, 3, 4, 5, . . .}.
We use the dots “. . .” to indicate that the set keeps going forever.
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Figure 2. A picture of N, the set of natural numbers

Too Much Information 2.7. Again we encounter the unknown
term “positive whole number.” You are probably so used to what a
number is that you would never think that it needs a definition. Here
we have a mental idea what a whole number is because we can think
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about, say for example, the number 2 as representing two of something.
And we live in a world where we can put two things in front of us. But
what is the mathematical object 2? What does 2 + 7 mean? How do
you add these “positive whole numbers?” Here we take the positive
whole numbers as a starting point. We assume for now that they exist,
we know how to add and multiply them, and that the basic properties
about them also hold. We will discuss this again in ????????????.

What is amazing is that you can construct the natural numbers
using only set theory. And it turns out that you can define how to
“add” two natural numbers using a method called induction. We will
learn the technique of induction in Chapter ?????.

Example 2.8. The numbers 1000 and 12, 325, 111, 432 are exam-

ples of natural numbers. The numbers −10,
1

2
, and π ≈ 3.14159265

are not natural numbers.

Informal Definition 2.9. The set of integers is the set whose
elements are zero, the positive whole numbers, and the negative whole
numbers. We denote the set of integers by Z. Thus

Z = {. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .}.
As in Informal Def. 2.6, we use the dots “. . .” to indicate that the set
extends infinitely in both directions.

Too Much Information 2.10. As with the natural numbers, our
definition of the integers is an informal definition. What is a negative
whole number and what is zero? In this book we will take the integers
and their basic properties as givens.

As we discussed in Remark 2.6 about the natural numbers, one can
also construct the integers out of sets and how to add and multiply
them. Then one can derive all of their usual properties.

Example 2.11. The numbers 101 and −1, 223, 546 and 6, 789 are
all integers. Notice that all of the natural numbers are integers. But,
not every integer is a natural number. For example, −10 is an integer.
But −10 is not a natural number because it is not positive.

So far the only examples of sets that we have are finite sets, such as
{1, 15, 0}, where one can list all of the elements of the set; and infinite
sets such as N = {1, 2, 3, . . .} whose elements follow a simple pattern
that is understood once a few of the elements of the set are listed. We
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Figure 3. A picture of Z, the set of integers

now describe another way to construct a set which allows for sets that
do not fit the above descriptions.
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Notation 2.12. We now describe set builder notation. Consider
the following expression

{x ∈ S | P (x)}.
This stands for the set of all x from the set S where P (x) is true. This
is a common way to construct a set. Sometimes we leave out the S
and just write x when S is understood. Another common notation is
{x ∈ S : P (x)}.

Example 2.13. Let S = {1, 6,−5, 3} and let X = {x ∈ S | x2 <
12}. The set X consists of the elements x from S that satisfy the
equation x2 < 12. Let’s check each element of S and see which ones
are in X. We see that

12 = 1 < 12
62 = 36 6< 12

(−5)2 = 25 6< 12
32 = 9 < 12

Thus, 1 and 3 are elements of X because they satisfy the equation
x2 < 12, but 6 and −5 are not elements of X. So X = {1, 3}.

Example 2.14. Consider the set S = {1, 7,−2, 3, 15, 22,−49, 13}.
Let X = {x ∈ S | 5 ≤ x < 22}. The set X consists of the elements x
from S that satisfy the equation 5 ≤ x < 22. Thus, X = {7, 15}.

Notation 2.15. There is a more general way to do set-builder
notation. The most general form is as follows:

{description of elements | condition imposed on elements}

Example 2.16. Let T = {7,−2, 14, 3}. Let Y = {x2 | x ∈ T}. In
this case, the set Y consists of all the elements of the form x2 where x is
an element of T . Thus, Y = {(7)2, (−2)2, (14)2, (3)2} = {49, 4, 196, 9}.

Example 2.17. Let X = {3x | x ∈ Z}. What are the elements
of X? We see that the set X consists of the elements of the form 3x
where x is an integer. For example, 6 = 3(2) is in X. The number
−15 = 3(−5) is also in X. We see that

X = {. . . , 3(−3), 3(−2), 3(−1), 3(0), 3(1), 3(2), 3(3), . . .}
= {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}.
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That is, the set X consists of the multiples of 3.

Example 2.18. Let A = {10,−5} and B = {0, 1}. Consider the
set

X = {5a− 2b | a ∈ A, b ∈ B}.

What does this mean? The notation “a ∈ A, b ∈ B” means that a is
an element of A and b is an element of B. When we write this we mean
that a and b range over all of the values of A and B. Thus, the set X
consists of the elements of the form 5a− 2b where a is an element of A
and b is an element of B. These elements are

5(10)− 2(0) = 50 (this is when a = 10 and b = 0)
5(10)− 2(1) = 48 (this is when a = 10 and b = 1)
5(−5)− 2(0) = −25 (this is when a = -5 and b = 0)
5(−5)− 2(1) = −27 (this is when a = -5 and b = 1)

So X = {50, 48,−25,−27}.

Check for Understanding 2.19.

(1) Let S = {−10, 4, 16, 77, 13, 2, 6,−155} and T = {x ∈ S | 2x−
1 < 50}. List the elements of T .

(2) Let S = {−5, 10, 4} and X = {x3 − 1 | x ∈ S}. List the
elements of X.

(3) Let A = {1, 2} and B = {5,−4, 100}. Let Y = {a + b | a ∈
A, b ∈ B}. List the elements of Y .

Informal Definition 2.20. The set of rational numbers is de-
noted by Q and is defined as follows

Q =
{a
b

∣∣∣ a, b ∈ Z, b 6= 0
}
.

Example 2.21. The numbers 1 =
1

1
, −100 =

−100

1
,
−1

10
, and

52

13
are rational numbers. Later, in Theorem 4.53, we will see that the
number

√
2 ≈ 1.414213562 is not a rational number; that is, there is

no way to write
√

2 in the form
a

b
where a and b are integers.
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Informal Definition 2.22. The set of real numbers is denoted
by R and is defined as follows

R = {x | x is a number with a decimal expansion} .

Example 2.23. A real number is any number with a decimal ex-

pansion. The numbers
√

2 ≈ 1.414213562, π ≈ 3.14159,
1

2
= 0.5,

−10 = −10.0, and 5 = 5.0 are all real numbers. Notice that natural
numbers, integers, and rational numbers are all real numbers.

One can picture the real numbers as a line that goes infinitely in
both directions. At each point on the line we have a real number given
by its decimal expansion. We call this line the real number line. See
Figure 4.

Too Much Information 2.24. Note again that the definition of
the rational numbers and real numbers is informal. What is a fraction?
What is a decimal expansion? Does it even make sense to make a
number that way? Yes, it does. If you want to get more formal and
construct these number systems, then you can do so. Again, as with
the integers and natural numbers, one can construct the set of rational
numbers and the set of real numbers using set theory. Although, one
requires limits to do so. For now we assume that the rational and real
numbers exist and they satisfy their usual properties. More about this
in ????????????????.

There is one other set that we need to define that is used quite a
bit in mathematics. It is the set that contains nothing.

Definition 2.25. The set with no elements is called the empty
set and is denoted by ∅ or {}.

Example 2.26. Consider the set S = {1, 2, 3}. Let X = {x ∈
S | 5 < x}. Thus X consists of all the elements x from S that satisfy
the equation 5 < x. Since no elements from S satisfy 5 < x we have
that X = ∅. That is, X is the empty set. Notice that the empty set
came in handy in this example. For without it, what would X be?

2.2. Exercises

(1) Find all the elements from the set {n ∈ Z | 1 ≤ n2 ≤ 100}.
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Figure 4. A picture of R, viewed as the real number line

(2) Let X = {x ∈ R | x2 + 1 = 0}. What set is X equal to?
(3) List 10 elements from the set {x ∈ R | x2 ≥ 1}. Does this set

have a smallest element? Explain.
(4) Find all the elements in the set {x ∈ N | x2 ≤ 9}.
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(5) Let S = {1, 5, 7} and T = {−1, 0, 10, 5}. Find all the elements
in the set {a+ b | a ∈ S, b ∈ T}.

(6) Let S = {1, 5, 7} and T = {−1, 0, 10, 5}. Find all the elements
in the set {a2 | a ∈ S}.

(7) List 10 elements from the set {2x | x ∈ Z}.
(8) List 10 elements from the set {x2 | x ∈ Z}.
(9) List 10 elements from the set {2x− 5y | x, y ∈ Z}.

(10) Suppose that k is some fixed integer. List 10 elements from
the set {xk | x ∈ Z}.

(11) Suppose that r and s are two fixed integers. List 10 elements
from the set {xr + ys | x, y ∈ Z}.

(12) Use set-builder notation to write the set {−3,−2,−1, 0, 1, 2, 3, 4}
without listing each of its elements individually.

(13) Use set-builder notation to write the set {1, 2, 3, 4, . . . , 100}
without listing each of its elements individually. By using set-
builder notation, you are avoiding the use of “. . .” and are
being more precise.

(14) Use set-builder notation to write the set of all positive odd
numbers.

(15) Suppose that Γ is some set, where every element of Γ is a real
number. Let Λ = {β2 | β ∈ Γ}. Given that 2x−1 ∈ Γ for some
real number x, what real number must then be an element of
Λ?

(16) Logic puzzle: Let Γ and Λ be as in Exercise (15). Tony says,
“I know an element of Λ.” Mike says, “What is it?” Tony
says, “I’m not going to tell you—then you would know a real
number which must be in Γ.” Mike says, “Now I know what
number it is.” What number is it?

(17) Suppose that xy ∈ {γ2 | γ ∈ Z} and y 6= 0. What can you
conclude about x?



Chapter 3
Logic

Pure mathematics is, in its
way, the poetry of logical
ideas.

Albert Einstein

In this chapter we introduce the basic ideas of logic. We need
logic to study mathematics. We need to know what we mean by the
statement “3 is odd and 5 < 7” and the statement “If x > 2, then
x2 > 4.” That is, we need to define when statements like “P and Q” and
“If P, then Q” are true or false. We will do this in this chapter. We also
introduce an important idea in mathematics: quantifiers. Quantifiers
appear in mathematical statements such as “For every integer x, either
x ≤ 5 or x > 5” or “There exists an integer x where 2x = 8.” Words
like “for every” and “there exists” are quantifiers. We will study these
in detail.

We would like to point out that although we use formal logical
symbols such as ∧, ∨, and ⇒ in this chapter, we will discontinue their
use in later chapters. Each symbol has an english version that goes
with it and most mathematicians use the english version instead of the
formal symbol. However, it is good to know what the logical symbols
are and what they mean, so we have included them in this chapter.

3.1. Rules of logic

26
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Definition 3.1. A proposition is a mathematical sentence that
is either true or false.

Example 3.2. The expression

1 + 1 = 2

is a proposition because it is true. The expression

−10 > 5

is a proposition because it is false. The expression

15 > x

is not a proposition because it is neither true or false. It depends on
what x is.

Given two propositions P and Q, sometimes we want to define a
new proposition, say R, out of them. For example, we may want to
define what “P and Q” means. One way to do this is with a truth
table. In the left-most columns we list all the possible truth values
of P and Q. In the next column we give the truth values of R as it
depends on P and Q. The general form is as follows.

P Q some other proposition R

T T the truth value of R when P is true and Q is true

T F the truth value of R when P is true and Q is false

F T the truth value of R when P is false and Q is true

F F the truth value of R when P is false and Q is false

Definition 3.3. Let P and Q be propositions. The conjuction of
P and Q is written P ∧Q or “P and Q”. It is defined to be true exactly
when both P and Q are true. If either of P or Q are false, then P ∧Q
is false. The truth table of P ∧Q is given by

P Q P ∧Q
T T T
T F F
F T F
F F F
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Example 3.4. The conjunction

(13 > 2) ∧ (| − 2| = 2)

is true because 13 > 2 is true and | − 2| = 2 is true. The conjunction

(1 + 1 = 2) and (−10 > 5)

is false because 1 + 1 = 2 is true and −10 > 5 is false. The conjunction

(7 < 2) ∧ (23 = 8)

is false because 7 < 2 is false and 23 = 8 is true. The conjunction

(3 is an even number) and (15 ≤ 14)

is false because “3 is an even number” is false and 15 ≤ 14 is false.

Definition 3.5. Let P and Q be propositions. The disjunction
of P and Q is written P ∨Q or “P or Q”. It is true when either P or
Q are true. If both P and Q are false, then P ∨Q is false. The truth
table of P ∨Q is given by

P Q P ∨Q
T T T
T F T
F T T
F F F

Example 3.6. The disjunction

(5 > −3) ∨ (102 = 1)

is true because 5 > −3 is true. The disjunction

(100 is an odd number) or (102 = 100)

is true because 102 = 100 is true. The disjunction

(3 < 10) ∨ (15 = 15)

is true because both 3 < 10 and 15 = 15 are true. The disjunction

(10 < −20) or (2 = 3)

is false because both 10 < −20 and 2 = 3 are false.
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Check for Understanding 3.7. Check if the following proposi-
tions are true or false.

(1) (5 < 10) and (−15 ≥ −1000)
(2) (−5 > 10) ∨ (−1 ≥ −10)
(3) (5 is even ) ∧ (−1 ≥ −10)
(4) (2! = 4) or (1 > −1)

Definition 3.8. Let P be a proposition. The negation, or denial,
of P is written ¬P or “not P”. It is true when P is false. It is false,
when P is true. The truth table of ¬P is given by

P ¬P
T F
F T

Too Much Information 3.9. Some books use ∼ P instead of
¬P for the negation of P .

Example 3.10. The proposition

¬(5 > 10)

is true because 5 > 10 is false. The proposition

¬(22 = 4)

if false because 22 = 4 is true. Consider the proposition

−5 is not a natural number.

One can write this as ¬(−5 is a natural number.) This proposition is
true because “−5 is a natural number“ is false.

Example 3.11. Let P be the proposition 5 > 10. In this example
we find the negation of P and simplify it. The negation of P is the
proposition “It is not the case that 5 > 10.” This simplifies to the
proposition 5 ≤ 10. Notice that 5 > 10 is false while 5 ≤ 10 is true;
that is, notice that P and ¬P have opposite true values.

Check for Understanding 3.12. Answer the following questions.

(1) Is the proposition ¬(5 ≥ 3) true or false?
(2) Is the proposition “7 is not a prime number” true or false?
(3) Find the negation of the proposition “10 is an even number.”
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Definition 3.13. Let P and Q be propositions. The implication
of P and Q is written P ⇒ Q or “If P, then Q” or “P implies Q”. It
is false precisely when P is true and Q is false. Otherwise, it is true.
The truth table of P ⇒ Q is given by

P Q P ⇒ Q
T T T
T F F
F T T
F F T

Example 3.14. The proposition

(5 > 3)⇒ (2 = 2)

is true because 5 > 3 is true and 2 = 2 is true. The proposition

If 5 > 3, then − 1 = 5

is false because 5 > 3 is true and −1 = 5 is false. The proposition

7 = 3 implies that 7 > 2

is true because 7 = 3 is false and 7 > 2 is true. The proposition

If 172 = −10, then 63 < 2

is true because 172 = −10 is false and 63 < 2 is false.

Too Much Information 3.15. We know that Definition 3.13
and Example 3.14 are confusing. The reason is because there is no
connection between P and Q in the “If P, then Q” examples that we
gave in Example 3.14. The definition of implication will make more
sense when we introduce quantifiers. This will allow us to use variables.
See Example 3.34.

Definition 3.16. Let P and Q be propositions. The bicondi-
tional of P and Q is written P ⇔ Q or “P if and only if Q” or “P iff
Q”. It is true when either both P and Q are true, or both P and Q are
false. Otherwise it is false. The truth table of P ⇔ Q is given by

P Q P ⇔ Q
T T T
T F F
F T F
F F T
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Example 3.17. The proposition

(5 = 5)⇔ (7 > 2)

is true because both 5 = 5 and 7 > 2 are true. The proposition

10 = 2 if and only if (−3)2 = 8

is true because both 10 = 2 and (−3)2 = 8 are false. The proposition

3 > 1 iff 2 = 5

is false because 3 > 1 is true and 2 = 5 is false. The proposition

(10 6= 10)⇔ (1002 ≥ 7)

is false because 10 6= 10 is false and 1002 ≥ 7 is true.

Too Much Information 3.18. We know that Definition 3.16 and
Example 3.17 are confusing. Again, as with implications, the defini-
tion of biconditionals will be made clear once we reach quantifiers and
variables.

Check for Understanding 3.19. Are the following propositions
true or false?

(1) If 5 ≤ 10, then 7 is an even number.
(2) 9 + 2 ≤ 15 if and only if (−10)2 = 100.
(3) If 1 + 2 + 3 = 6, then 16 is an integer.
(4) 9 is a real number if and only if 10 > 123.
(5) If 6 is an odd number, then 5 + 10 = 16.

Definition 3.20. A propositional form is a well-formed expres-
sion that consists of logical connectives, parentheses, and letters repre-
senting propositions.

Example 3.21. ¬P , (P∨Q)∧P , and P ⇔ (P∨Q) are propositional
forms.

Too Much Information 3.22. Notice that we have defined a
propositional form as a “well-formed” expression. Without going into
all the details, this just means that the expression must make sense.
For example, ⇒ QQ∧ is not a propositional form because it is pure
nonsense.
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Too Much Information 3.23. Propositional forms differ from
propositions. For example, (5 > 3) ∨ (2 = 7) is a proposition. It has
a truth value—it is true. On the other hand, P ∨Q is a propositional
form—it has no truth value until propositions are plugged into P and
Q.

Definition 3.24. Two propositional forms are logically equiva-
lent if and only if they have the same truth tables.

Example 3.25. Consider the statements “P iff Q” and “(If P, then
Q) and (If Q, then P).” Are these propositional forms logically equiva-
lent? Yes. We can check it with a truth table. In the truth table below
we use the logic versions of each statement to save space.

P Q P ⇒ Q Q⇒ P (P ⇒ Q) ∧ (Q⇒ P ) P ⇔ Q
T T T T T T
T F F T F F
F T T F F F
F F T T T T

Notice that the columns under P ⇔ Q and (P ⇒ Q)∧(Q⇒ P ) are the
same. Thus, P ⇔ Q and (P ⇒ Q)∧ (Q⇒ P ) are logically equivalent.
How does this help us? It tells us that “P iff Q” is true if and only if
both “If P, then Q” and “If Q, then P” are true.

Example 3.26 (de Morgan’s rules). Let P and Q be propositions.
Then

(1) ¬(P ∨Q) and (¬P ) ∧ (¬Q) are logically equivalent.
(2) ¬(P ∧Q) and (¬P ) ∨ (¬Q) are logically equivalent.

The above facts are known as de Morgan’s rules. We show part (1)
and leave part (2) as an exercise. The following truth table shows that
part (1) is true.

P Q ¬P ¬Q P ∨Q ¬(P ∨Q) (¬P ) ∧ (¬Q)
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

Example 3.27. de Morgan’s rules allow us to negate statements of
the form “P and Q” and “P or Q.” Consider the statement

(5 > 7) and (107 ∈ N).
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By de Morgan’s rules, the negation of this statement is

¬(5 > 7) or ¬(107 ∈ N)

which simplifies to
(5 ≤ 7) or (107 6∈ N).

Check for Understanding 3.28. Negate the following proposi-
tions.

(1) (7.32 6∈ N) and (| − 10| = 5)
(2) (2−2 = 4) or (5 is odd)

3.2. Quantifiers

Definition 3.29. Let S be a set. Suppose that x is a variable whose
value comes from S. An expression P (x) involving the variable x such
that whenever x is replaced by a value from S becomes a proposition,
is called a predicate. S is called the universe of P (x).

Example 3.30. Let S be the set of natural numbers N = {1, 2, 3, . . .}.
Let P (n) be the expression 2n < n!. The expression P (1) is 21 < 1! = 1
which is false. The expression P (2) is 22 < 2! = 2 which is false. The
expression P (3) is 23 < 3! = 6 which is false. The expression P (4) is
24 < 4! = 24 which is true. We see that once we plug in a natural
number for n into P (n) then we get a proposition that is either true or
false. Hence, P (n) is a predicate.

Example 3.31. Let S = Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. Con-
sider the predicate P (x) given by

(x > 5)⇒ (x > 10).

Then P (12) is the proposition

(12 > 5)⇒ (12 > 10)

which is true; P (6) is the proposition

(6 > 5)⇒ (6 > 10)

which is false; and P (−12) is the proposition

(−12 > 5)⇒ (−12 > 10)

which is true.
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Definition 3.32. Let P (x) be a predicate where x takes values
from some set S. That is, S is the universe for P (x).

(1) The proposition (∃x ∈ S)P (x) is read “there exists an x in
S such that P (x)” or “for some x in S, P (x)” and is true
precisely when there is at least one element x of S such that
P (x) is true.

(2) The proposition (∀x ∈ S)P (x) is read “for all x in S, P (x)′′

and is true precisely when P (x) is true for every x in S.

Example 3.33. Let S = Z and P (x) be the predicate

(x > 5) and (x2 = 81).

Notice that P (9) is the proposition (9 > 5) and (92 = 81) which is
true. Hence there exists an x in S where P (x) is true. Thus,

(∃x ∈ Z)((x > 5) and (x2 = 81))

is true. Notice that P (6) is the proposition (6 > 5) and (62 = 81)
which is false. Since P (x) is not true for every integer x we see that

(∀x ∈ Z)((x > 5) and (x2 = 81))

is false.

Example 3.34. This is an example of why P ⇒ Q is defined the
way it is.

Let S(x) be the predicate

If x > 3, then x2 > 9.

Then S(4) is the proposition

If 4 > 3, then 42 > 9

which is true. S(0) is the proposition

If 0 > 3, then 0 > 9

which is true. S(−4) is the proposition

If − 4 > 3, then (−4)2 > 9

which is true.
Note that if x is an integer and x > 3, then by squaring both sides

of the inequality we have that x2 > 9. Thus, whenever x > 3 is true,
x2 > 9 is true. Note that if x > 3 is false, then S(x) is true by the
definition of P ⇒ Q—this is because if P is false, then P ⇒ Q is
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always true. This shows that (∀x ∈ Z)S(x) is true since S(x) is true
for all integers x.

Notation 3.35. In math we don’t always write the quantifiers. For
example, suppose you are reading a math book and you run into the
following:

“Let x be an integer. If x is even, then x+ 1 is odd.”
or

“If x is an even integer, then x+ 1 is odd.”
What do these statements mean? If you translate them into the format
of this chapter, then they are saying the following:

“For every integer x, if x is even, then x+ 1 is odd.”
or in logic

(∀x ∈ Z)(x is even ⇒ x+ 1 is odd. )

Consider the predicate

“There exists an integer x such that 2x = 8.′′

If we translate this into the logical format of this chapter we get

(∃x ∈ Z)(2x = 8).

Consider the expression (∀x ∈ S)P (x). When is (∀x ∈ S)P (x)
false? It is false when there exists an x in S that makes P (x) true.
When is (∀x ∈ S)P (x) true? When every x in S makes P (x) true.
Thus, ¬((∀x ∈ S)P (x)) is true when there exists some x from S that
makes P (x) false. And ¬((∀x ∈ S)P (x)) is false when every element
x in S makes P (x) true. This is precisely when (∃x ∈ S)(¬P (x)) is
true or false. This argument gives us the first part of Theorem 3.36. A
similar argument shows that the second part is true.

Theorem 3.36. Let P (x) be a predicate where x takes values from
some set S. Then

(1) ¬((∀x ∈ S)P (x) is logically equivalent to (∃x ∈ S)(¬P (x))
(2) ¬((∃x ∈ S)P (x) is logically equivalent to (∀x ∈ S)(¬P (x))

Example 3.37. The negation of the proposition

There exists an integer x such that 2x = 10
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is
For every integer x we have that 2x 6= 10.

Example 3.38. The negation of the proposition

For every integer x we have that x is even or x is prime

is

There exists an integer x such that x is odd and x is not prime.

Sometimes we need two quantifiers in a predicate. This is called
nested quantifiers.

Example 3.39. Consider the following sentence “For every natural
number x, there exists a natual number y where x ≤ y.” In logic we
write this as follows:

(∀x ∈ N)(∃y ∈ N)(x ≤ y)

What does this mean? What does it take to make the above sen-
tence true? We would need that no matter what natural number x
you pick there must be another natural number y where x ≤ y. For
example, for the natural number x = 5 one can let y = 6 and we have
x ≤ y. In general, given a natural number x we may set y = x+ 1 and
we have x ≤ y. Thus the above sentence is true.

Example 3.40. Consider the following sentence “There exists a
natural number x, such that for all natural numbers y, we have that
x ≤ y.” In logic we write this as follows:

(∃x ∈ N)(∀y ∈ N)(x ≤ y)

What does this mean? What does it take to make the above sen-
tence true? Here we must produce a natural number x where x ≤ y
no matter what natural number y we pick. For example, suppose we
pick x = 4. This x will not make the above sentence true because if
you choose y = 2 then x 6≤ y. However, if instead we choose x = 1
then x ≤ y for all natural numbers y because 1 is the smallest natural
number. Hence the above sentence is true.

3.3. Exercises

Here are some definitions for this exercise set.
Let n ∈ N with n > 1. We say that n is a prime number if its only

divisors are 1 and n. For example, 4 is not prime because 2 divides 4
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and 2 is not equal to 1 or 4. The number 5 is prime, because the only
divisors of 5 are 1 and 5.

Let n ∈ N. A proper divisor of n is a divisor of n other than n
itself. n is called a perfect number if n equals the sum of its proper
divisors. For example, the proper divisors of the nuber 6 are 1, 2, and
3. And 6 = 1 + 2 + 3. So 6 is a perfect number. The proper divisors of
4 are 1 and 2. Since 1 + 2 6= 4, we know that 4 is not a perfect number.

(1) Which of the following are true? Explain why or why not.
Don’t just write down true or false.
(a) (5 = | − 5|) ∧ (3 > −2)
(b) (23 = −8) ∨ (13 < 0)
(c) (23 = 8) ∨ (1 < 10)
(d) (1000 is prime ) ∧ (1 ≥ 1)
(e) If 7 is prime, then 19 = 3 + 6.
(f) (19 > 10)⇒ (| − 16| = 16)
(g) (f(x) = |x| is differentiable at 0)∧(7 is a perfect number)

(h) ¬
(
x3

3
is an antiderivative of x2

)
(i) ¬(¬(3 is an odd number))

(2) Which of the following are true? Explain why or why not.
Don’t just write down true or false.
(a) (∃x ∈ N)(x2 = 4)
(b) (∀x ∈ Z)((x > 10) ∨ (x < 10))
(c) There exists an x ∈ Z where x2 = 2.
(d) (∀x ∈ Z)((x > 2)⇒ (x2 > 1))
(e) Let x be in Z. If x > 2, then −x < −10.
(f) (∃x ∈ Z)((−1 ≤ x < 10)⇒ (x2 = 9))
(g) Let x ∈ Z. If −1 ≤ x < 10, then x2 = 9.
(h) Let x ∈ Z. We have that x > 2 if and only if x2 ≥ 4.
(i) (∃x ∈ Z)((x > 2)⇔ (x2 ≥ 4))
(j) (∃x ∈ Z)((x2 = 1) ∧ (x > 2))
(k) (∀x ∈ Z)((x > 100) ∨ (x < 101))
(l) (∀x ∈ Z)((1 ≤ x ≤ 3)⇒ (x > −1))

(m) (∀x ∈ Z)((x3 = 8)⇔ (x ≥ −2))
(3) Are the two given propositions logically equivalent? Use a

truth table to check.
(a) ¬ (P ∧Q) and (¬P ) ∨ (¬Q).
(b) P ⇒ Q and (¬Q)⇒ (¬P ).
(c) P ∧ (¬Q) and (P ∨Q)⇔ P .
(d) P ∧Q and P ∨ (P ⇒ Q)
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(4) Find the negation of the following expresions.
(a) x ∈ A and x ∈ B
(b) x ∈ A or x 6∈ B
(c) x is an integer and x ≥ 0
(d) (∀x ∈ Z)((x > 10) ∨ (x < 10))
(e) There exists and odd perfect number.
(f) (∃x ∈ N)(2x = 5)
(g) Let x ∈ Z. Then 1/x is not an integer.
(h) x ∈ Z and x is odd.

3.4. Fun math facts

The first four perfect numbers are 6, 28, 496, and 8128. Notice that
they are all even. A famous conjecture of number theory is that there
are no odd perfect numbers. (A conjecture is a statement that someone
thinks is true, but no one knows whether or not it is true.) No one has
ever found an odd perfect number.

Notice that 21(22−1) = 2·3 = 6, 22(23−1) = 4·7 = 28, 24(25−1) =
16 · 31 = 496, and 26(27 − 1) = 64 · 127 = 8128. Here is an interesting
fact: If n is an even perfect number, then n can be written in the form
n = 2m−1(2m − 1) where 2m − 1 is prime. Furthermore, if 2m − 1 is
prime, then n = 2m−1(2m − 1) is perfect.

It is unknown whether or not there are an infinite number of even
perfect numbers. According to the article “Perfect Numbers : An Ele-
mentary Introduction” by John Voight, as of the year 1998, the largest
even perfect number found is 23021376(23021377−1). It has 1819050 digits.
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Chapter 4
Proof techniques

EPIGRAPH.

PERSON

In mathematics—unlike any other field of study—to accept some-
thing as true, we require absolute certainty. If you make a claim, then
we mathematicians will insist that you demonstrate its correctness with
an unbroken chain of logical steps. In other words, you must write a
proof.

This textbook was designed as a transition from lower-level math
courses, which tend to be more heavily computational in nature, to
upper-level math courses, which tend to be more theoretical. So, in
your later math courses, many of the homework and test questions will
consist of writing proofs. For success in this course as well as your later
math courses, this chapter is therefore critical.

4.1. Our starting assumptions

A few sections from now, we will prove that
√

2 is an irrational
number. This is not an obvious fact, so to convince you that it is
true, we should be very careful in our reasoning. Along the way, we
will make use of the fact that every fraction can be written in lowest
terms. Is that an obvious fact? Can we use it in a proof? Perhaps it is
obvious to you, but not so obvious to someone else. Part of the power
of mathematics comes from its complete lack of ambiguity, and so we
refuse to tolerate this level of subjectivity. To remedy the situation,
we create a list of facts about numbers that we all agree to accept and
that we all agree can be used as a step in a proof.

40
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We now state these main assumptions that will serve as our starting
point for proofs. The first of these spells out the fundamental properties
of equality.

Assumption 4.1.

(1) If a is any element of any set, then a = a. (reflexive property
of equality)

(2) If a = b and P (a) is true, then P (b) is true. (substitution
property of equality)

Item (1) is fairly straightforward; it says that everything equals
itself. Item (2) is extraordinarily general; it says that if two things are
equal, then you’re allowed to substitute one for the other. The two
things can be any type of object: numbers, sets, functions, whatever.

Example 4.2. Suppose we know that z2 − 1 = (z + 1)(z − 1) and
that y > z2 − 1. Apply the substitution property of equality.

Answer: Substituting (z + 1)(z − 1) for z2 − 1, we get y > (z +
1)(z − 1).
〈In Item (2) of Assumption 4.1, z2 − 1 takes the place of a, and

(z + 1)(z− 1) takes the place of b. The predicate P (x) is “y > x.” We
are given that P (z2−1) is true. So (2) then tells us that P ((z+1)(z−1))
is also true.〉

Too Much Information 4.3. You may be familiar with the sym-
metric and transitive properties of equality. Both of those follow from
Assumption 4.1.

Our next assumption deals with the real numbers. Note that the
last item, property (17), involves some vocabulary we will not encounter
until Chapter 11.

Assumption 4.4. We assume that there exists a set R such that
there are two elements 0, 1 ∈ R as well as two binary operations +
and · on R and a relation < on R such that the following statements
are true.

(1) ∀a, b ∈ R, we have that a + b ∈ R. (“R is closed under addi-
tion.”)

(2) ∀a ∈ R, we have that a+ 0 = a. (“0 is an additive identity for
R.”)

(3) ∀a ∈ R, we have that ∃b ∈ R such that a + b = 0. (“Every
element a of R has an additive inverse.”)

(4) ∀a, b, c ∈ R, we have that (a + b) + c = a + (b + c). (“R is
associative under addition.”)
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(5) ∀a, b ∈ R, we have that a + b = b + a. (“R is commutative
under addition.”)

(6) ∀a, b ∈ R, we have that a · b ∈ R. (“R is closed under multi-
plication.”)

(7) ∀a ∈ R, we have that a · 1 = a. (“1 is a multiplicative identity
for R.”)

(8) ∀a ∈ R such that a 6= 0, we have that ∃b ∈ R such that a·b = 1.
(“Every nonzero element a of R has a multiplicative inverse.”)

(9) ∀a, b, c ∈ R, we have that (a ·b) ·c = a ·(b ·c). (“R is associative
under multiplication.”)

(10) ∀a, b ∈ R, we have that a · b = b · a. (“R is commutative under
multiplication.”)

(11) ∀a, b, c ∈ R, we have that a · (b+ c) = a · b+ a · c. (“R satisfies
the distributive property.”)

(12) 0 6= 1. (“Zero is not equal to one.”)
(13) ∀a, b ∈ R, if a > 0 and b > 0, then a + b > 0. (“The set of

positive real numbers is closed under addition.”)
(14) ∀a, b ∈ R, if a > 0 and b > 0, then ab > 0. (“The set of

positive real numbers is closed under multiplication.”)
(15) ∀a, b, c ∈ R, if a > b, then a + c > b+ c. (“Addition by a real

number preserves inequalities.”)
(16) ∀a ∈ R, we have that 0 > a or a = 0 or a > 0. (“R satisfies

the Law of Trichotomy.”)
(17) Every nonempty bounded subset of R has a least upper bound.

(“R is complete.”)

Each item in Assumption 4.4 is called an axiom (that is, a defining
assumption) for the real numbers.

Too Much Information 4.5. You are already familiar with Ax-
ioms 1–16. We know that. That’s the point. Because you already
accept them as true, it is reasonable to use them as a starting point
that we can all agree on. And so we can also accept as true any facts
that follow logically from them, including some spectacular and non-
obvious results. In Chapter 11, we will study Axiom 17 in detail; as
you become familiar with it, it will come to seem as natural as the
other axioms.

Too Much Information 4.6. Axioms 1–4 say that R is a “group”
under addition. In contrast, the natural numbers do not form a group
under addition, because they do not contain the additive identity ele-
ment. Axioms 1–5 say that R is a “commutative” (or “abelian”) group
under addition. Similarly, the corresponding axioms for multiplication,
that is, Axioms 6–9, say that the set of nonzero elements of R forms a
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group under multiplication; adding Axiom 10 to these says that that
group is commutative as well.

Axioms 1–10, together with Axiom 11, say that R is a “ring.” (Some
authors, though, omit Axiom 7 from the list of ring axioms.) Because R
is a ring that also satisfies Axiom 10, we say that R is a “commutative
ring.” The integers also form a ring. And because R is a commutative
ring that also satisfies Axioms 8 and 12, we say that R is a “field.” The
rational numbers and complex numbers give us two other examples of
fields. The integers do not form a field, because not every nonzero
integer has a multiplicative inverse in the integers. You will learn more
about groups, rings, and fields in a course on Abstract Algebra.

From your Linear Algebra course, you may remember that the field
axioms encompass the axioms for a “vector space”; hence every field is
a vector space over itself.

Being a field that also satisfies Axioms 13–16, R is an “ordered
field.” The rational numbers also form an ordered field, whereas the
complex numbers do not. The complete list of axioms in Assumption
4.4 asserts that R is a “complete ordered field.” These axioms were not
chosen haphazardly. In fact, it can be shown in a precise way that R is
completely determined by them. That is, any other complete ordered
field must be essentially the same as (more precisely: “isomorphic to”)
R. (To put it in technical terms, we can prove that Assumption 4.4
is “categorical.”) One typically does just that as part of an Analysis
course. Even your professor may be surprised to know, though, that
we have more axioms here than we really need. For example, we do not
need to have the commutative property of addition on this list, because
we can prove that fact from the other axioms—see the exercises at the
end of Chapter 11. However, for our first few proofs, we would like to
have the commutative property of addition at our disposal, and so we
choose include it in our starting assumptions, even though it’s overkill.

Too Much Information 4.7. Note that there are many true
statements about the real numbers not listed in Assumption 4.4. For
example, it is true that ∀a ∈ R, we have that 0 · a = 0. However, this
property is not one of our starting assumptions. In fact, we can use
Assumption 4.4 to prove that ∀a ∈ R, we have that 0 · a = 0. We try
to begin with as few starting assumptions as possible, then prove what
we can from there.

Similarly, we try to begin with as few symbols as possible, then
define others from there. So we assume the existence of addition and
multiplication, but then we can define subtraction and division in terms



4. PROOF TECHNIQUES 44

of them. (See Section 4.) Also notice we do not use the symbols ≤, ≥,
or > in the axioms, because those can all be defined in terms of <.

Definition 4.8. We define a ≥ b to mean that a > b or a = b. We
define a < b to mean that b > a. And we define a ≤ b to mean that
a = b or a < b.

We frequently combine inequalities into compound inequalities such
as “4 ≤ x < y ≤ 7,” which means “4 ≤ x and x < y and y ≤ 7.”

We now state our axioms for the integers.

Assumption 4.9. We assume that there exists a set Z such that:

(1) If n ∈ Z, then n ∈ R. (“Every integer is a real number.”)
(2) 0, 1 ∈ Z. (“0 and 1 are integers.”)
(3) ∀a, b ∈ Z, we have that a + b ∈ Z. (“Z is closed under addi-

tion.”)
(4) ∀a ∈ Z, we have that −a ∈ Z. (“The additive inverse of an

integer is an integer.”)
(5) ∀a, b ∈ Z, we have that a · b ∈ Z. (“Z is closed under multipli-

cation.”)
(6) Suppose S is a set such that 1 ∈ S and such that if x ∈ S,

then x ∈ R and x+ 1 ∈ S. It follows that if n ∈ Z and n > 0,
then n ∈ S. (“The set of positive integers obeys the principle
of mathematical induction.”)

Too Much Information 4.10. You may have noticed that item
(6) is a bit involved. Indeed, we have an entire chapter (Chapter 5)
devoted to that axiom, which formalizes the principle of mathematical
induction.

Too Much Information 4.11. Notice that the statement “The
multiplicative inverse of a nonzero integer is an integer.” is not on this
list. And for good reason: It is not true. Counterexample: 2 ∈ Z, but
1/2 /∈ Z.

Now that we have introduced Z more formally, we can define N
more rigorously.

Definition 4.12. We define N := {n ∈ Z | n > 0}. Elements of N
are called natural numbers.
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Too Much Information 4.13. You might recall that earlier, we
had an informal definition of natural numbers, namely, Informal Defi-
nition 2.6, which gave us some intuition about what natural numbers
are but is too “fuzzy” to use in proofs. In contrast, Definition 4.48 is
a precise mathematical definition that we can use in rigorous proofs.

4.2. Proofs from Axioms – put as optional at end

Before getting started with any proof, it is a good idea to identify
the following information: What statements are given? What state-
ment are we trying to prove? (In other words, what do we know, and
what do we want to show?) Also, what definitions, axioms, and previ-
ously proven statements seem relevant?

NOTE TO OURSELVES: SOMETHING TO EMPHASIZE: AT
EVERY STEP, ASK YOURSELF, IS IT SOMETHING WE *KNOW*
OR SOMETHING WE WANT TO *SHOW*?

MORE NOTES TO OURSELVES:
SO MAYBE WE SHOULD HAVE EXERCISES AND EXAMPLES

WHERE STUDENTS HAVE TO DO SOME BABY STEPS, SUCH
AS: IDENTIFY THE GIVEN INFORMATION; IDENTIFY THE STATE-
MENT WE’RE TRYING TO PROVE; IDENTIFY DEFINITIONS,
AXIOMS, AND THEOREMS THAT SEEM RELEVANT.

Immediate consequences of the assumptions
Example 4.14. Suppose a problem says: “Let x, y, z ∈ R. Prove

that if x+ y = x+ z, then y = z.” What statements are given? What
statement are we trying to prove?

Answer. Given information (what we know): x, y, z ∈ R. x+ y =
x+ z.

We are trying to prove (what we want to show): y = z.
(For a problem that says, “Prove that if , then ,” the “if”

part is always part of the given information, and the “then” part is
what we want to show.)

CHECK WE SAY SOMEWHERE THAT IN x, y, z ∈ R THE
COMMAS MEAN AND.

Example 4.15. Let x, y, z ∈ R. Prove in minute detail that if
x+ y = x+ z, then y = z.

Proof. We know that x+ y = x+ z.
By Axiom (3) of Assumption 4.4, because x ∈ R, we know that there
exists ∃b ∈ R such that x+ b = 0.
So b+ (x+ y) = b+ (x+ z).



4. PROOF TECHNIQUES 46

So (b+ x) + y = (b+ x) + z, by the associative property of addition.
So (x+ b) + y = (x+ b) + z, by the commutative property of addition.
So 0 + y = 0 + z, by substitution.
Therefore y = z, by Axiom (2) of Assumption 4.4. �

Our next example illustrates how we can use a previously proven
statement to go from one step to the next in a proof.

Example 4.16. Let x, y ∈ R. Prove in minute detail that if x+y =
x, then y = 0.

Proof. We are given that x+ y = x.
So x+ y = x+ 0, by Axiom (2) of Assumption 4.4 and substitution.
So y = 0, by the statement we proved in Example 4.15.〈Note that 0
takes the place of z.〉 �

Too Much Information 4.17. Here is another proof of the state-
ment in Example 4.16.

Proof. We know that x+ y = x.
By Axiom (3) of Assumption 4.4, because x ∈ R, we know that there
exists ∃b ∈ R such that x+ b = 0.
So b+ (x+ y) = b+ x.
So (b+ x) + y = b+ x, by the associative property of addition.
So (x+ b) + y = (x+ b) + z, by the commutative property of addition.
So 0 + y = 0, by substitution.
Therefore y = 0, by Axiom (2) of Assumption 4.4. �

Both proofs are correct. Which proof do you like better? Most
mathematicians would prefer our first proof, because it’s shorter. After
all, we already did all that work in the first place to prove the statement
in Example 4.15. Why do all that work all over again? See Remark
4.26 for another take on this.

Example 4.18. Suppose a problem says: “Prove that if y ∈ R,
then 0 · y = 0.” Which axioms, definitions, and previously proven
statements seem relevant?

Possible answer. Axiom (2) of Assumption 4.4 seems relevant,
because it is the most important property of the number 0.

Example 4.19. Prove in minute detail that if y ∈ R, then 0 ·y = 0.

Proof. Let y ∈ R.
By Axiom 2 of Assumption 4.4, we know that 0 + x = x for all x ∈ R.
In particular, taking x = 0, we get 0 + 0 = 0.
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So

0 · y = (0 + 0) · y (by substitution)

= 0 · y + 0 · y (by the distributive property)

Let z = 0 · y.
Then z = z + z, by substitution.
So z = 0, by the statement we proved in Example 4.16.〈Note that z
takes the place of both x and y.〉
Therefore 0 · y = 0, by substitution. �

Too Much Information 4.20. A few comments on Example
4.19. We use the word “Let” to introduce a variable for the first time.
So once we write “Let y ∈ R,” then y is a fixed (that is, unchanging)
real number that we can work with.

Believe it or not, we’re not being as picky as we could be in these
proofs. For instance, in one step in Example 4.19, we applied the
statement from Example 4.16. Technically, to apply that statement,
first we should have established that z ∈ R. We could have argued that
z ∈ R because 0 ∈ R and y ∈ R and R is closed under multiplication.
Even in these ”minute detail” proofs, we’re willing to allow a very small
amount of ”hand waving” like that. It’s a judgment call as to when
it’s OK to skip steps—ask your professor for guidance.

Finally, you may wonder why we didn’t just add −z to both sides
of the equation z = z + z. The reason is that we do not yet know
that each real number has a unique additive inverse, and in these early,
nitpicky proofs, we don’t want to refer to −z until we know that there’s
just one −z.

Example 4.21. Suppose a problem says: “Let x, y, z be real num-
bers such that x > y and y > z. Prove that x > z.” Which axioms,
definitions, and previously proven statements seem relevant?

Possible answer. We do not have any definitions or previously
proven statements involving inequalities. So we will certainly need to
use some or all of Axioms (13)–(16).

Example 4.22. Let x, y, z be real numbers such that x > y and
y > z. Prove in minute detail that x > z.

Proof. We know that x > y and y > z.
By Axiom (3) of Assumption 4.4, ∃b ∈ R such that y + b = 0.
Similarly, by Axiom (3) of Assumption 4.4, ∃c ∈ R such that z+ c = 0.
By Axiom (15) of Assumption 4.4, we get that x + b > y + b and
y + c > z + c.
So x+ b > 0 and y + c > 0, by substitution.
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So (x+ b) + (y + c) > 0, by Axiom (13) of Assumption 4.4.
So x+ (b+ (y + c)) > 0, by the associative property of addition.
〈Here we are treating y+c as a single real number, which is OK, because
the real numbers are closed under addition.〉
So x+ ((b+ y) + c) > 0, by the associative property of addition.
So x+ ((y + b) + c) > 0, by the commutative property of addition.
So x+ (0 + c) > 0, by substitution.
So x+ c > 0, by Axiom (2) of Assumption 4.4.
So (x+ c) + z > 0 + z, by Axiom (15) of Assumption 4.4.
So (x+ c) + z > z, by Axiom (2) of Assumption 4.4.
So x+ (c+ z) > z, by the associative property of addition.
So x+ (z + c) > z, by the commutative property of addition.
So x+ 0 > z, by substitution (using an equation we know from earlier,
namely z + c = 0).
Therefore x > z, by Axiom (2) of Assumption 4.4.
〈Whew! It certainly takes more work than you might think to prove a
statement in such gory detail. Rest assured, soon we will be skipping a
lot of these steps.〉 �

Too Much Information 4.23. If you sat down and tried to do
Example 4.22 as a homework problem, it’s pretty unlikely that you
would just sit down, start writing, and this proof would just flow right
out. More likely, you need to do a bunch of scratch work first. Think of
writing a proof as more similar to writing an essay than to doing, say,
a Calculus problem. You should expect to have to write a few drafts
before you get to your final version. Here, for example, is some of the
scratch work / thought process we might have done before coming up
with the solution in Example 4.22:

MAYBE PUT THIS IN A THOUGHT BUBBLE COMING OUT
OF A PERSON’S HEAD?

Let’s try to use the axiom which tells us that the sum of two positive
numbers is positive.

But we don’t have any positive numbers yet, so we can’t use that
yet. All we have is x > y and y > z.

But we do know x− y is positive and y − z is positive.
So what if we add those . . . ?

Example 4.24. Prove in minute detail that if a = b and b = c,
then a = c. (Side note: This is known as the transitive property of
equality.)

Proof. Use the substitution property of equality. Specifically, sub-
stitute a for b in the equation b = c to get a = c. �
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Example 4.25. Prove in minute detail that if a, b, c ∈ Z, then
ab+ ac ∈ Z.

Proof. Let a, b, c ∈ Z.
Then a, b, c ∈ R, by axiom (1) of Assumption 4.9.
Then a(b + c) = ab + ac, by the distributive property. 〈Small techni-
cality: Before using the distributive property, we first established that
a, b, c ∈ R, because Assumption 4.4 applies only to real numbers.〉
We know b+ c ∈ Z, because Z is closed under addition and b, c ∈ Z.
So a(b+c) ∈ Z, because Z is closed under multiplication, and a, b+c ∈
Z.
So ab+ ac ∈ Z, by substitution. �

Too Much Information 4.26. In our proof in Example 4.25, we
took one of many possible paths. Alternatively, we could have first used
closure under multiplication to show that ab, ac ∈ Z, then used closure
under addition to show that ab + ac ∈ Z. It is typical to have many
different ways to prove a statement. As long as every step in these
proofs is valid, they are all correct—no valid proof is “more correct”
than another. (Contrast that to science, philosophy, or even everyday
life, where we often find certain pieces of evidence or lines of reasoning
more convincing than others.)

That doesn’t mean we like all proofs equally. We prefer proofs that
are as short as possible, with no wasted steps. It’s a bit like driving
a car from one place to another. We have a starting point (the given
information) and a destination (the statement we’re trying to prove).
There are many different routes we can take to get from where we are
to where we want to go. Any route will will get us there, so long as we
follow the rules of the road, but we prefer routes that get us there as
quickly as possible.
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Check for Understanding 4.27. Fill in the blanks in this proof
of this statement:
Let x, y ∈ R. Prove in minute detail that if x > 0 > y, then 0 > xy.

Proof. We know x > 0 and 0 > y.
By , ∃b ∈ R such that y + b = 0.
So 0 + b > y + b, by .
So 0 + b > 0, by .
So b > 0, by .
So xb > 0, by .
So xb+ xy > xy, by .
So x(b+ y) > xy, by .
So x(y + b) > xy, by .
So x · 0 > xy, by .
So 0 · x > xy, by .
So 0 > xy, by .

�

From this point on, we will skip many of these steps when doing
proofs. For example, in the future we may go directly from “2n− 4 =
3n+7” to “−11 = n” without spelling out all the axioms used. (In case
you’re curious, they’re the ones involving additive inverses, additive
identity, associative property, distributive property, and multiplicative
identity.) The homework problems where we ask you to write out all
these steps are the ones that say, “Prove in minute detail . . .”

4.3. Direct Proofs

In the next several sections, we will discuss several different proof
techniques. We begin with the most straightforward one, namely the
“direct proof.”

Suppose we want to prove that P ⇒ Q is true. One way to do this
is with a direct proof. The method involves the following steps.

Direct proof of P ⇒ Q

• Step 1. Assume that P is true.
• Step 2. String together other statements and theorems that

you know are true with the fact that P is true. In this step,
to get from one line to the next, we may use only:
− The given information (that is, P )
− Definitions
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− Assumptions (for example, Assumption 4.4)
− Previously proven statements (including previous theo-

rems, previous lines in a proof, homework problems—
anything that’s been proven before)

• Step 3. Repeat Step 2 until you arrive at the fact that Q is
true.
• Step 4. Because starting with the fact that P is true leads to

the fact that Q is true, we conclude that the statement P ⇒ Q
is true.

Definition 4.28. Let x be an integer. We say that x is even if
there exists an integer k where x = 2k. We say that x is odd if there
exists an integer k where x = 2k + 1.

Example 4.29. The integer 5 is odd since 5 = 2(2)+1. The integer
100 is even since 100 = 2(50). The integer 0 is even since 0 = 2(0).
The integer −15 is odd since −15 = 2(−8) + 1.

Theorem 4.30. If x and y are even integers, then x+ y is even.

Proof. Suppose that x and y are even integers. Then there exist
integers a and b where x = 2a and y = 2b. So x+y = 2a+2b = 2(a+b).
Since a+ b is an integer, we see that x+ y is even. �

Definition 4.31. Let x and y be integers with x 6= 0. We say that
x divides y if there exists an integer k where xk = y. If x divides y,
then we say that x is a divisor of y and we write x|y. If x does not
divide y, then we write x 6 |y.

Example 4.32. Since 5(2) = 10, we see that 5 divides 10. So we
write 5|10. Since (−6)(−2) = 12, we see that −6 divides 12. So we
write −6|12.

Note that there is no integer k with 3k = 2 (we would need k = 2
3

which isn’t an integer). Therefore 3 does not divide 2 and we write
3 6 |2.
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Theorem 4.33. Suppose that x, y, and z are integers where x|y
and x|z. Then x|(y + z)

Proof. Since x|y, there is an integer k with xk = y. Since x|z,
there is an integer m with xm = z. Thus y+ z = xk+xm = x(k+m).
Since k +m is an integer, we see that x divides y + z. �

Example 4.34 (Common Mistake). The following attempt at a
proof contains a common mistake that we’ve seen many times. Find
the error. “Suppose that x, y, and z are integers where x|y and x|z.
Prove that x|(y + z). Proof. We know there exists an integer k with
xk = y, by def. of divides. Also, we know there exists an integer k
with xk = z, by def. of divides. So y + z = xk + xk = x(2k). Since 2k
is an integer, therefore x|y + z, by def. of divides.”

The error is that the variable k is overused. The variable k was
introduced in the line “We know there exists an integer k with xk = y .
. .” Once a variable has been introduced, it cannot be introduced again.
So in the next sentence, we should use a different variable instead of k.
That’s why, in Thm. 4.33, we used an m.

The reason for this rule becomes clear when you plug in numbers.
Imagine, for example, that x = 5, y = 15, z = 20. You can’t have the
same k for both x and y.

Example 4.35 (Common Mistake). The following attempt at a
proof contains a common mistake that we’ve seen many times. Find
the error. “Prove that if x ∈ Z, then x|x2.Proof First, x|x2 means
xk = x2 for some k ∈ Z. Solve for k to get k = x, which is an integer.”

The error is that in the first line, we do not know that x|x2—that’s
something we’re trying to show. The logic is completely backwards.
The “proof” above is really scratch work we might do in order to get
the idea of how to prove it. See the next example for a correct proof.

Example 4.36. Prove that if x ∈ Z, then x|x2.

Proof. We know x2 = x · x, and x ∈ Z.
So x|x2, by def. of “divides.” �

Too Much Information 4.37. Notice that superficially, the cor-
rect proof in Example 4.36 looks a lot like the incorrect proof in Ex-
ample 4.35. They use the same definition, and a lot of the same words.
But there is a world of difference between them. Correct proofs flow
in a logical order: We start with what we know. At each step, we rely
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only on facts that we know up to that point. Then we end with what
we’re trying to show.

We now introduce the idea of congruence modulo an integer. This is
an important tool in number theory. (Indeed, it is used in all branches
of mathematics.)

Definition 4.38. Let n be an integer with n ≥ 2. Let x and y
be integers. If n divides x − y then we say that x is congruent to y
modulo n and write x ≡ y(mod n). If n does not divide x− y then we
say that x is not congruent to y modulo n and we write x 6≡ y(mod n).

Example 4.39. Note that 32 ≡ 7(mod 5) because 32− 7 = 25 and
5 divides 25. Note that 10 6≡ 26(mod 7) because 10− 26 = −16 and 7
does not divide −16. Note that 1 ≡ −5(mod 3) because 1− (−5) = 6
and 3 divides 6.

The main fact to notice about congruence is the following: Two
integers are congruent modulo n if they differ by a multiple of n. For
example, 100 − 4 = 96 = 3(32). We see that 100 and 4 differ by a
multiple of 3, so 100 ≡ 4(mod 3).

Example 4.40. Can one add equations modulo n? Yes. Before we
delve into the theoretical formulation of this idea, let’s see an example
first. Let n = 3. Notice that 5 ≡ 17(mod 3) because 5 − 17 = −12
which is divisible by 3 since −12 = 3(−4). Notice also that −12 ≡
6(mod 3) because −12− 6 = −18 which is divisible by 3 since −18 =
3(−6). So we have two equations modulo three: 5 ≡ 17(mod 3) and
−12 ≡ 6(mod 3). Without thinking if we are doing something that
makes sense, let’s add the two equations and see if it works. Adding
we get that −7 ≡ 23(mod 3). Notice that we added 5 and 12 to get
−7 and we added 17 and 6 to get 23, but we did not add the 3’s.
Let’s check if what we did works. Notice that −7− 23 = −30 which is
divisible by 3 since −30 = 3(−10). So −7 ≡ 23(mod 3) is correct. The
theorem below formalizes this procedure.

Theorem 4.41. Let a, b, c, d, n be integers with n ≥ 2. If a ≡
b(mod n) and c ≡ d(mod n), then (a+ c) ≡ (b+ d)(mod n).

Proof. Since a ≡ b(mod n) we know that n divides a − b. Thus,
a − b = nk for some integer k. Since c ≡ d(mod n) we know that n
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divides c− d. Thus, c− d = nm for some integer m. Therefore,

(a+ c)− (b+ d) = (a− b) + (c− d) = nk + nm = n(k +m).

Thus, n divides (a+c)−(b+d). Therefore, (a+c) ≡ (b+d)(mod n). �

Examples from the real line and plane

Track 2 stuff goes here. Track 2 stuff goes here. Track 2 stuff goes
here. Track 2 stuff goes here.

4.4. Proofs by cases

Suppose that you want to prove P ⇒ Q. You begin by assuming
that P is true. What if there are a variety of ways that P can be true?
What do you do? You can do a proof by cases. This involves a case for
each way that P can be true. For each case you prove that Q is true.
When you have exhasted all the cases, then you are done.

Proof of P ⇒ Q by cases

• Step 1. Assume that P is true.
• Step 2. For each way that P can be true, derive a distinct

proof that Q is true.
• Step 4. Since no matter how P is true we have that Q is true

we know that P ⇒ Q is true.

Examples from number theory

We begin with a fact about even and odd integers.

Theorem 4.42. Let x be an integer. Then x(x+ 1) is even.

Proof. Let x be an integer. There are two cases: x is even or x is
odd. We assume each individually.

Case 1: First assume that x is even. Then x = 2k for some integer
k. Thus,

x(x+ 1) = 2k(2k + 1) = 4k2 + 2k = 2(2k2 + 1).

Since 2k2 + 1 is an integer, we see that x(x+ 1) is even.
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Case 2: Now assume that x is odd. Then x = 2n + 1 for some
integer n. Thus,

x(x+ 1) = (2n+ 1)(2n+ 1 + 1) = 4n2 + 6n+ 2 = 2(n2 + 3n+ 1).

Since n2 + 3n+ 1 is an integer, we see that x(x+ 1) is even.
In either case x(x + 1) is even. Hence, we have completed the

proof. �

Sometimes the theorem you are trying to prove has an “or” in it.
You can deal with this with a proof by cases.

Theorem 4.43. Let n be an integer. If n ≡ 0(mod 3) or n ≡
1(mod 3), then n2 ≡ n(mod 3).

Proof. We begin by supposing that n is an integer with n ≡
0(mod 3) or n ≡ 1(mod 3). We break the proof into two cases.

Case 1: Suppose that n ≡ 0(mod 3). Then 3 divides n− 0. There-
fore, 3 divides n. This gives us that n = 3a for some integer a. There-
fore,

n2 − n = (3a)2 − 3a = 9a2 − 3a = 3(3a2 − a).

Since 3a2 − a is an integer this tells us that 3 divides n2 − n. Hence
n2 ≡ n(mod 3).

Case 2: Suppose that n ≡ 1(mod 3). Then 3 divides n − 1. This
gives us that n− 1 = 3b for some integer b. So n = 3b+ 1. Therefore,

n2−n = (3b+1)2−(3b+1) = 9b2+6b+1−3b−1 = 9b2+3b = 3(3b2+b).

Since 3b2 + b is an integer this tells us that 3 divides n2 − n. Hence
n2 ≡ n(mod 3). �

Examples from the real line and plane
PROVE x2 ≥ 0 FOR ALL x.
PROVE IF ab = 0 THEN a = 0 OR b = 0.

4.5. Existence and Uniqueness Proofs

Prove uniqueness of inverses, then define these:

Definition 4.44. Let a ∈ R. A real number b such that a+ b = 0
is called an additive inverse of a. Later in this chapter, we will prove
that any a ∈ R has a unique additive inverse, which we denote −a.
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Definition 4.45. We define subtraction by a− b := a+ (−b) for
all real numbers a and b.

Note that the symbol “:=” means “is defined to be equal to.”

Definition 4.46. Let a ∈ R. A real number b such that ab = 1
is called a multiplicative inverse of a. Later in this chapter, we
will prove that if a ∈ R and a 6= 0, then a has a unique multiplicative
inverse, which we denote a−1.

Definition 4.47. We define division by a/b := a · b−1 for all real
numbers a and b such that b 6= 0.

Now that we have defined division, we can define Q more rigorously.

Definition 4.48. We define Q := {a/b | a, b ∈ Z, b 6= 0}. Elements
of Q are called rational numbers.

MAYBE A SECTION ON Existence and Uniqueness Proofs???

4.6. Contraposition

Suppose you want to prove that P ⇒ Q is true, but you cannot
figure out how to prove it with a direct proof. Instead you can try to
prove it by contraposition. Take a look at the following truth table.

P Q ¬P ¬Q P ⇒ Q (¬Q)⇒ (¬P )
T T F F T T
T F F T F F
F T T F T T
F F T T T T

Notice that P ⇒ Q is logically equivalent to (¬Q)⇒ (¬P ). Hence
we get the following.
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Proof of P ⇒ Q by contraposition

• Step 1. Write down (¬Q)⇒ (¬P ) and prove that it is true.
• Step 2. Since (¬Q)⇒ (¬P ) is logically equivalent to P ⇒ Q,

we know that P ⇒ Q is true.

Examples from number theory

We now give some examples of proofs by contraposition.

Theorem 4.49. If x2 is an even integer, then x is an even integer.

Proof. We will prove this by contraposition. Here we have the
proposition P ⇒ Q where P is “x2 is an even integer” and Q is “x is
an even integer. Notice that ¬P is “x2 is an odd integer” and ¬Q is
“x is an odd integer.” Thus, (¬Q) ⇒ (¬P ) is the proposition “If x is
an odd integer, then x2 is an odd integer.” We prove this instead.

Suppose that x is an odd integer. Then there exists an integer k
where x = 2k+1. Thus x2 = (2k+1)2 = 4k2 +4k+1 = 2(2k2 +2k)+1.
Since 2k2 +2k is an integer, this shows that x2 is an odd integer, which
completes our proof by contraposition. �

Theorem 4.50. Let x and y be integers. If xy 6≡ 0(mod 3), then
x 6≡ 0(mod 3) and y 6≡ 0(mod 3).

Proof. We will prove this by contraposition. By DeMorgan’s rules
the negation of

x 6≡ 0(mod 3) and y 6≡ 0(mod 3)

is

x ≡ 0(mod 3) or y ≡ 0(mod 3).

Hence we will prove the statement “If x ≡ 0(mod 3) or y ≡ 0(mod 3),
then xy ≡ 0(mod 3). We prove this by cases.

Case 1: Suppose that x ≡ 0(mod 3). Then 3 divides x − 0 = x.
Hence x = 3k for some integer k. Thus xy = 3ky is divisible by 3. So
xy ≡ 0(mod 3.
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Case 2: Suppose that y ≡ 0(mod 3). Then 3 divides y − 0 = y.
Hence y = 3m for some integer m. Thus xy = 3xm is divisible by 3.
So xy ≡ 0(mod 3. �

Examples from the real line and plane

Track 2 stuff goes here. Track 2 stuff goes here. Track 2 stuff goes
here. Track 2 stuff goes here.

4.7. Contradiction

There are two common ways to prove a statement by contradiction.
Sometimes you want to prove that P is true. In that case you do the
following.

Proof of P by contradiction

• Step 1. Assume that P is false.
• Step 2. Use definitions, previous theorems, and the fact that
P is false to show that some statement R is both true and false
at the same time. This is called a contradition. Note that a
statement cannot be both true and false at the same time.
• Step 3. Since we have a contradiction if P is false, we must

have that P is true.

Sometimes you want to prove that P ⇒ Q is true. You do this as
follows.

Proof of P ⇒ Q by contradiction

• Step 1. Assume that P is true.
• Step 2. To show that P ⇒ Q is true, you must show that Q

is true. So assume that Q is false.
• Step 2. Use definitions, previous theorems, and the fact that
P is true and Q is false to show that some statement R is both
true and false at the same time. This is a contradiction since
a statement cannot be both true and false at the same time.
• Step 3. Hence, if P is true, then we must have that Q is true.

So P ⇒ Q is true.

Examples from number theory
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Let’s prove some stuff via contradiction.

Definition 4.51. We say that a real number x is irrational if x
is not a rational number.

Too Much Information 4.52. In our next example, we will prove
that

√
2 is irrational. First, we have to deal with a small problem: We

don’t have any axioms, theorems, or definitions about square roots.
How can we get started when we don’t have anything to work with?
For now, then, let’s assume that for all real numbers a and b with a > 0,
there exists a positive real number ab. Moreover, let’s assume that the
following properties hold:

(1) ∀a ∈ R, we have that a1 = a.
(2) ∀a, b, c ∈ R, we have that abac = ab+c.
(3) ∀a, b, c ∈ R, we have that (ab)c = abc.
(4) ∀a, b, c ∈ R, we have that (ab)c = acbc.

If n is a natural number, then we denote a1/n by n
√
a. We denote

a1/2 by
√
a.

In Chapter ??, we’ll give a precise definition of ab, and we’ll then
be able to prove these laws of exponents for real numbers.

Theorem 4.53.
√

2 is an irrational number.

Proof. We prove this by contradiction. Suppose that
√

2 is a
rational number. Then

√
2 = m

n
where m and n are integers and

n 6= 0. By canceling common factors, we may assume that m and n
have no common factors greater than one. By squaring both sides of√

2 = m
n

and then multiplying both sides by n2 we see that 2n2 = m2.
Thus m2 is an even integer. By Theorem 4.49, this implies that m is
an even integer. So there exists an integer k where m = 2k. Hence
2n2 = m2 = (2k)2 = 4k2. Therefore n2 = 2k2. Again, by Theorem
4.49, this implies that n is even. But this implies that both m and n
are even. Therefore m and n have the integer 2 as a common divisor.
This contradicts that assumption that we initially made. Hence,

√
2

cannot be a rational number. Therefore
√

2 is irrational. �
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Theorem 4.54. Suppose that a and b are integers. If a− b is odd,
then a+ b is odd.

Proof. We prove this by contradiction. Suppose that a−b is odd.
Further assume that a + b is even. We will show that this implies a
contradiction. Since a−b is odd, a−b = 2k+1 for some integer k. Since
a + b is even, a + b = 2m for some integer m. Adding both equations
gives that 2a = (a + b) + (a − b) = 2m + 2k − 1 = 2(m + k − 1) + 1.
Wait a minute! This is saying that the even integer 2a equals an odd
integer 2(m+ k− 1) + 1. This is a contradiction. Therefore, if a− b is
odd, then there is no way that a+ b is even. Thus, we must have that
a+ b is odd if a− b is odd. �

Examples from the real line and plane

4.8. If and only if proofs

Suppose that you want to prove P ⇔ Q. That is, you want to prove
that P is true if and only if Q is true. By the definition of P ⇔ Q you
must show that both P ⇒ Q and Q⇒ P are true.

Proof of P if and only if Q

• Step 1. Give a proof that P ⇒ Q is true.
• Step 2. Give a seperate proof that Q⇒ P is true.

Let us give an example to illustrate this.
Example 4.55. Suppose that we want to prove that the following

statement is true: “Let n and N be integers. We have that n ≥ N if

and only if
5

n
+ 1 ≤ 5

N
+ 1.” Recall from ??? that P ⇔ Q is equivalent

to (P ⇒ Q) ∨ (Q ⇒ P ). Therefore, we must prove that the following
two statements are both true.

(1) Let n and N be integers. If n ≥ N then
5

n
+ 1 ≤ 5

N
+ 1.

(2) Let n and N be integers. If
5

n
+ 1 ≤ 5

N
+ 1, then n ≥ N .
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We first prove (1). Suppose that n and N are integers and that n ≥ N .
Therefore, we have that 1

n
≤ 1

N
. Multiplying by 5 and then adding one,

we see that
5

n
+ 1 ≤ 5

N
+ 1.

Now we prove (2). This is a totally new proof and is independent of

the one given above. Suppose that
5

n
+ 1 ≤ 5

N
+ 1. Subtract one from

both sides and then divide by 5 to get that 1
n
≤ 1

N
. Cross multiply and

get that N ≤ n, which is what we want.

Examples from number theory

Let’s prove some iff proofs.

Theorem 4.56. Let a and b be non-zero integers. We have that a|b
and b|a if and only if a = b or a = −b.

Proof. We first show that if a|b and b|a, then a = b or a = −b.
Assume that a|b and b|a. By definition this implies that there exist
integers k and m where ak = b and bm = a. Thus akm = bm = a.
Dividing both sides by a gives that km = 1. Since k and m are integers,
this implies that either k = m = 1 or k = m = −1. If k = m = 1, then
a = b. If k = m = −1, then a = −b.

Now we show that if a = b or a = −b, then a|b and b|a. Assume
that a = b or a = −b. If a = b, then a(1) = b and b(1) = a. Thus,
a|b and b|a. If a = −b, then a(−1) = b and b(−1) = a. Thus a|b and
b|a. �

Examples from the real line and plane

Track 2 stuff goes here. Track 2 stuff goes here. Track 2 stuff goes
here.

4.9. Proofs involving nested quantifiers

MAYBE A SECTION ON Proofs involving nested quantifiers

4.10. Application: Number Theory
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In this section we use all of the previous proof techniques...blah
blah blah blah.

Examples from number theory

Theorem 4.57. Let a and b be integers with a ≥ 0. There exist
integers q and r with b = aq + r and 0 ≤ r < a.

Proof. Put a proof here. �

Example 4.58. Put some examples here.

Definition 4.59. Let a and b be integers, not both zero. We say
that d is a common divisor of a and b if d divides a and d divides
b. The greatest common divisor of a and b, denoted by gcd(a, b), is
the largest common divisor of a and b.

Example 4.60. Let’s calculate gcd(36, 48). The divisors of 36 are
1, 2, 3, 4, 6, 9, 12, 18, 36. The divisors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
The common divisors of 36 and 48 are 1, 2, 3, 4, 6, 12. The greatest com-
mon divisor is gcd(36, 48) = 12.

Example 4.61. Let’s calculate gcd(6, 0). The divisors of 6 are
1, 2, 3, 4, 6. Every integer divides 0. For example, 4 divides 0 because
4(0) = 0. Therefore, the common divisors of 6 and 0 are 1, 2, 3, 4, 6.
The greatest common divisor is gcd(6, 0) = 6.

Example 4.62. Let’s calculate gcd(42, 72). The divisors of 42 are
1, 2, 3, 6, 7, 14, 21, 42. The divisors of 72 are 1, 2, 3, 4, 6, 8, 9, 12, 18, 36, 72.
The common divisors of 42 and 72 are 1, 2, 3, 6. The greatest common
divisor is gcd(42, 72) = 6. Notice also that 6 = 72(3) + 42(−5). That
is, we can write 6 = 72x0 + 42y0 where x0 = 3 and y0 = −5. The next
theorem shows that we can do this in general.

Theorem 4.63. Let a and b be integers, not both zero. Then there
exist integers x0 and y0 where ax0 + by0 = gcd(a, b).
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Proof. Consider the set S = {ax + by | x, y ∈ Z}. Note that a,
−a, b, and −b are in S because a = a(1) + b(0), −a = a(−1) + b(0),
b = a(0) + b(1), and b = a(0) + b(−1). Since a and b are not both
zero, this implies that there exists some positive integer in S. Let d
be the smallest positive integer in S. Since d is in S we know that
d = ax0 + by0 for some integers x0 and y0. We now show that d is the
greatest common divisor of a and b. This will complete the proof.

First we show that d is a common divisor of a and b. By Theorem
4.57, there exist integers q and r where a = dq + r and 0 ≤ r < d. We
want to show that r = 0. That will imply that a = dq, which shows
that d divides a. Notice that

r = a− dq = a− ax0q − by0q = (1− qx0)a+ (−y0q)b.

Thus r is in S. Since 0 ≤ r < d and d is the smallest positive integer
in S, we must have that r = 0. As stated above, this implies that d
divides a. A similar argument shows that d divides b. Hence d is a
common divisor of a and b.

We now show that d is the greatest common divisor of a and b.
Suppose that d′ is another positive common divisor of a and b. Thus
d′ divides a and d′ divides b. So there exist integers k and m where
d′k = a and d′m = b. Therefore

d = ax0 + by0 = d′kx0 + d′my0 = d′(kx0 +my0).

Thus d′ divides d. Since d and d′ are both positive integers, this implies
that d′ ≤ d. Hence d is the greatest common divisor of a and b. �

Too Much Information 4.64. The above theorem is an existence
proof. It shows that x0 and y0 exist, but it doesn’t tell us how to find
them. There is an algorithm to find x0 and y0, but we do not discuss
it in this book. It is called the Euclidean algorithm. You can find it in
PUT A REFERENCE HERE.

Definition 4.65. A integer p is a prime if p ≥ 2 and the only
divisors of p are 1 and p.

Example 4.66. 5 is a prime because the only divisors of 5 are 1
and 5. The integer 4 is not prime because 2 is a divisor of 4.

The primes between 2 and 100 are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,

59, 61, 67, 71, 73, 79, 83, 89, 97.
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Theorem 4.67. Let a, b, and p be integers. If p is a prime and
p|ab, then p|a or p|b.

Proof. If p|a then we are done. Suppose that p 6 |a. Since the only
divisors of p are 1 and p, and p is not a divisor of a, we must have that
gcd(p, a) = 1. By Theorem 4.63, we have that 1 = px0 + ay0 for some
integers x0 and y0. Therefore, b = px0b+ ay0b. Since p|ab, there exists
an integer k where ab = pk. Thus b = px0b+y0pk. So p(x0b+y0k) = b.
Therefore, p|b. �

Theorem 4.68.
√

3 is irrational.

Proof. We prove this theorem by contradiction. Temporarily as-
sume that

√
3 is rational. Then

√
3 = a

b
where we may assume that

a and b have no common divisors. Squaring both sides of this equa-
tion and multiplying by b2 gives us that 3b2 = a2. Hence 3 divides
a2 = a · a. Since 3 is a prime, we know by Theorem 4.67 that 3 divides
a. This implies that there exists an integer k where 3k = a. Plugging
3k = a into 3b2 = a2 gives 3b2 = 9k2. Thus b2 = 3k2. So 3 divides
b2. As above, since 3 is a prime, this implies that 3 divides b. We have
shown that 3 is a common divisor of a and b, which is a contradiction.
Therefore

√
3 is not rational. �

Too Much Information 4.69. We now turn our attention to
logarithms. Like exponents, it takes some work to define them for all
real numbers—we’ll do that later in Chapter ??. For now, we will make
the following assumption:

For all positive real numbers a and b, there exists a unique real
number x such that bx = a.

We use the notation logb a for this unique real number x.

Example 4.70. Prove that log2(5) is irrational.

Proof. kjljklkj �

Examples from the real line and plane
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Track 2 stuff goes here. Track 2 stuff goes here. Track 2 stuff goes
here. Track 2 stuff goes here.

4.11. Exercises

4.11.1. Direct Proofs.

(1) Let x and y be integers. Prove that if x and y are odd, then
x+ y is even.

(2) Let x and y be integers. Prove that if x and y are odd, then
xy is odd.

(3) Let x and y be integers. Prove that if x is even and y is odd,
then 3x+ 7y is odd.

(4) Let x and y be integers. Prove that if x is odd then, 2x2+3x+4
is odd.

(5) Let x, y, and z be integers with x 6= 0 and y 6= 0. Prove that
if x|y and y|z, then x|z.

(6) Let x, y, m, and n be integers with x 6= 0 and m 6= 0. Prove
that if x|y and m|n, then xm|yn.

(7) Let x, y, and z be integers with x 6= 0 and y 6= 0. Prove that
if xy|z, then x|z.

(8) Let x, y, z, and n be integers with n 6= 0. Prove that if
n|(x− y) and n|(y − z), then n|(x− z).

(9) Let a, b, c, x, and y be integers with a 6= 0. Prove that if a|b
and a|c, then a|(bx+ cy).

(10) Given a, b, and n state whether a ≡ b(mod n) or a 6≡ b(mod n).
(a) a = 5, b = 3, n = 2
(b) a = 17, b = 210, n = 3
(c) a = −13, b = 21, n = 7
(d) a = 10, b = 7, n = 4
(e) a = −30, b = 15, n = 5

(11) Let
A = {x ∈ Z |x ≡ 3(mod 5)}.

List 5 positive and 5 negative elements in A.
(12) Let

A = {x ∈ Z |x ≡ −6(mod 7)}.
List 5 positive and 5 negative elements in A.

(13) Let a, b, c, and n be integers with n ≥ 2. Prove the following:
(a) a ≡ a(mod n).
(b) If a ≡ b(mod n) then b ≡ a(mod n).
(c) If a ≡ b(mod n) and b ≡ c(mod n), then a ≡ c(mod n).
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(14) Let a, b, and n be integers and n ≥ 2. Prove: If a ≡ 0(mod n),
then b+ a ≡ b(mod n)

(15) Let a, b, c, d, and n be integers and n ≥ 2. Prove: If a ≡
b(mod n) and c ≡ d(mod n), then a + c ≡ b + d(mod n) and
ac ≡ bd(mod n).

4.11.2. Contraposition.

(1) Let x and y be integers. Prove that if xy is even, then either
x or y is even.

(2) Let x and y be integers. Prove that if x2 + 1 is odd, then x is
even.

(3) Let x and y be integers. Prove that if x2y + 3 is even, then x
is odd or y is even.

4.11.3. Contradiction.

(1) Suppose that x is a real number. Prove that if x is irrational
and x 6= 0, then 1

x
is irrational.

(2) Suppose that x and y are real numbers. Prove that if x is
rational and y is irrational, then x+ y is irrational.

(3) Suppose that x and y are real numbers. Prove that if x is
rational and y is rational, then x + y is rational and xy is
rational.

(4) Prove that 3
√

2 is irrational.

(5) Prove that

√
2

3
is irrational.

(6) Prove that log2(3) is irrational.
(7) Let x and y be integers. Prove by contradiction: If xy is

even, then either x or y is even. (This same problem is in the
section on Contraposition. How does the proof differ when you
use contradiction vs. contraposition?)

(8) Let x and y be integers. Prove by contradiction: If x2 + 1
is odd, then x is even. (This same problem is in the section
on Contraposition. How does the proof differ when you use
contradiction vs. contraposition?)

(9) Let x and y be integers. Prove by contradiction: If x2y + 3
is even, then x is odd or y is even. (This same problem is in
the section on Contraposition. How does the proof differ when
you use contradiction vs. contraposition?)

4.11.4. Iff proofs.

(1) Let x, y, z be integers. Prove the following: xz|yz if and only
if x|y.
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4.11.5. Application: Number Theory.

(1) Warm up: Let k and x be integers. If 2k = x2, then 2 divides
x.

(2) Warm up: Let k be an integer. If 27 = 3k3, then 3 divides k.
(3) Warm up: Let g = gcd(a, b). If d|a and d|b, then d divides g.

[Hint: Look at Theorem 4.63.]
(4) Let a and b be integers, not both zero. Prove that gcd(a, b) =

gcd(b, a).
(5) Let a be a non-zero integer. Prove that gcd(a, 0) = a.
(6) Let a be a non-zero integer and p be a prime. Prove that

gcd(p, a) = 1 if and only if p does not divide a.
(7) Let x be an integer. Prove that if x2 is even, then 4 divides

x2.
(8) Prove that

√
5 is irrational.

(9) Prove that if p is a prime, then
√
p is irrational.

(10) Prove that log3(5) is irrational.
(11) Calculate the following:

(a) gcd(12, 24)
(b) gcd(16, 36)
(c) gcd(5, 18)
(d) gcd(0, 3)

(12) Let a and b be integers, not both zero, and d = gcd(a, b).
Prove that a|b if and only if d = a.

(13) Suppose that a, b, x, y are integers. Prove that gcd(a, b) divides
ax+ by.

(14) Prove that no integers x and y exist such that x−y = 200 and
gcd(x, y) = 3.

(15) Prove that there exist integers x and y where 3x+ 18y = 9.
(16) Prove that there are no integers solutions x and y to the equa-

tion 6x− 3y = 7.
(17) Suppose that x, y, z are integers. Prove that x|yz if and only

if
x

gcd(x, y)

∣∣∣∣ z.

(18) This is a four part exercise. The last part needs the previous
parts.
(a) Suppose that a and b are integers, not both zero. Suppose

that there exist integers x and y with ax+ by = 1. Prove
that gcd(a, b) = 1.

(b) Suppose that a and b are integers, not both zero. Let

d = gcd(a, b). Prove that gcd

(
a

d
,
b

d

)
= 1.
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(c) Suppose that a and b are integers, not both zero. Prove
that if gcd(a, b) = 1 and a|bc, then a|c.

(d) Suppose that x and y are integers, not both zero. Let

z be another integer. Prove that if x|yz, then
x

gcd(x, y)
divides z.

(19) Write down a true statement about the integers or real num-
bers. Then prove it. (Of course, your statement should not
be an axiom or definition or statement that you’ve proven al-
ready.)

4.12. Fun math facts

A number is called algebraic if it is the root (zero) of an equation
of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0,

where an, an−1, . . . , a1, a0 are integers. If a number is not algebraic,
then it is said to be transcendental.

For example, the number
√

2 is algebraic because it is the root of
the equation x2− 2 = 0. The complex number i is algebraic because it
is the root of the equation x2 + 1 = 0. 1/2 is algebraic because it is the
root of the equation 2x− 1 = 0. It is true that any rational number is
algebraic. Can you prove it?

It is not even clear that transcendental numbers exist. In 1844,
Liouville gave the first proof that transcendental numbers do indeed
exist. Later, in 1851, he gave examples of transcendental numbers.
One of his examples was the following number:

∞∑
n=1

10−n! = 0.110001000000000000000001000 . . .

There is a proof of this fact on page 418 in the 5th edition of the book
“An Introduction to the theory of numbers” by Niven, Zuckerman, and
Montgomery. It uses techniques from calculus. It is known that π and
e are transcendental numbers. This means that there is no polynomial
equation with integer coefficients that π is a root of. It is not easy
to prove this. According to Wikipedia, it is not known whether the
following numbers are transcendental or not: π+ e, π− e, πe, π/e, ππ,
ee, πe.

Note: Since any rational number is algebraic, this shows that a real
number that is transcendental must be irrational. Why?
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Too Much Information 4.71. You may be interested to know
that computers can prove theorems. A computer can treat “=” and
“+” and “>” and so forth as meaningless symbols. Some mathemati-
cians have programmed computers to start with axioms as strings of
such symbols, follow rigid rules of logic to manipulate these symbols,
and thereby obtain mathematical truths! (No deep theorems have yet
been proven this way, however, so humans still have the advantage
here. For now.)

Although human beings are not computers, by making both the
axioms and rules of logic as strict and rigid as possible, we then have a
system without any ambiguity: if you claim to have proven a new the-
orem, any two mathematicians in the world ought to be able to agree,
eventually, on whether your proof is correct. This absolute clarity was
a major reason for the development of the axiomatic method.

HOW ABOUT A LITTLE ON THE HISTORY OF HOW IT GOT
TO BE THAT PROOFS BECAME SO IMPORTANT FOR MATHE-
MATICIANS?



Chapter 5
Induction

5.1. Proofs by induction

We begin with an example that illustrates the technique of induc-
tion.

Example 5.1. Given a positive integer n, let S(n) be the statement
2n < 3n. How do we prove that this statement is true? Is it even true?
Let’s try a few cases. When n = 1, then S(1) is the statement 21 < 31,
which is true. When n = 2, then S(2) is the statement 22 < 32, which
is true. When n = 10, 000, then S(n) is the statement 210000 < 310000.
Is this true? It turns out that it is true. But how would you check
it? These numbers are huge! Try typing them into a computer algebra
system like Mathematica.

Suppose that we want to prove that S(n) is true for all integers n ≥
1. To do this we can use induction. Here is how it works. First we check
the first case, which is n = 1 in this problem. We did this above and
saw that S(1) is true since 21 < 31. Now we do the following “ladder”
part of induction: We show that whenever S(k) is true for some integer
k ≥ 1, then we must have that S(k + 1) is also true. Suppose that k
is some integer with k ≥ 1. Assume that S(k) is true. That is assume
that 2k < 3k. (Note that we are making an assumption that S(k) is
true—we haven’t proven it.) Now if we multiply the equation 2k < 3k

on both sides by 2, then we get 2 ·2k < 2 ·3k. So 2k+1 < 2 ·3k. Because
2 < 3 we see that 2 · 3k < 3 · 3k. Putting this all together we get that

2k+1 < 2 · 3k < 3 · 3k = 3k+1.

Hence 2k+1 < 3k+1. So S(k + 1) is true.
What have we done? We proved two things:

70
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(1) S(1) is true. That is 21 < 31.
(2) If S(k) is true for some integer k ≥ 1, then S(k + 1) is true.

Now look at what we have. We know that S(1) is true. By (2) using
k = 1, this implies that S(k + 1) = S(2) is true; that is, 22 < 32. Now
we apply (2) again using k = 2. This gives us that S(k + 1) = S(3) is
true; that is 23 < 33. Now we apply (2) again using k = 3. This gives
us that S(k + 1) = S(4) is true; that is 24 < 34. You can keep using
(2) forever and ever! What happens is that you get that S(n) is true
for all n ≥ 1. Induction is powerful!

Definition 5.2 (The principle of induction). Let S(n) be a state-
ment where n is an integer. Suppose that

(1) S(n0) is true for some fixed integer n0.
(2) The following statement is true: For each k ≥ n0, if S(k) is

true, then S(k + 1) is true.

Then S(n) is true for all n ≥ n0.

Example 5.3. Let x be a real number with x 6= 1. We now show
by induction that

1 + x+ x2 + · · ·+ xn =
xn+1 − 1

x− 1

for every positive integer n with n ≥ 0.

Proof. Let S(n) be the statement

1 + x+ x2 + · · ·+ xn =
xn+1 − 1

x− 1
.

When n = 0, the statement S(0) is the statement

1 =
x0+1 − 1

x− 1

which is true.
Let k be an integer with k ≥ 0 and assume that S(k) is true.

That is assume that

(1) 1 + x+ x2 + · · ·+ xk =
xk+1 − 1

x− 1
.

Adding xk+1 to both sides of equation (1) gives

1 + x+ x2 + · · ·+ xk + xk+1 =
xk+1 − 1

x− 1
+ xk+1,
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which simplifies to

1 + x+ x2 + · · ·+ xk + xk+1 =
xk+1 − 1

x− 1
+ xk+1

=
xk+1 − 1

x− 1
+
xk+1(x− 1)

x− 1

=
xk+2 − 1

x− 1

=
x(k+1)+1 − 1

x− 1
.

Hence S(k + 1) is true.
By the principle of mathematical induction, we have that S(n) is true
for all n ≥ 0. �

5.2. Complete induction

Definition 5.4 (Principle of complete induction). Let S(n) be a
statement where n is an integer. Suppose that

(1) S(n0) is true for some fixed integer n0.
(2) The following statement is true: Given k ≥ n0, if S(n0), S(n0+

1), S(n0 + 2), . . . , S(k − 2), S(k − 1) are all true, then S(k) is
true.

Then S(n) is true for all n ≥ n0.

Consider an integer, say n = 120. Notice that we can keep factoring
120 into smaller and smaller pieces. First we break it into

120 = 2 · 60.

We can’t break the two any further, but we can break the 60 into
60 = 2 · 30 which gives

120 = 2 · 2 · 30.

We can factor 120 by breaking 30 into 3 · 15. This gives

120 = 2 · 2 · 3 · 10.

If we keep doing this we get

120 = 2 · 2 · 3 · 2 · 5
= 2 · 2 · 2 · 3 · 5
= 23 · 3 · 5.
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We can’t factor 120 any further because each of the numbers in 2·2·2·3·5
is a prime and can’t be factored any further. Is there another way to
factor n into primes? Maybe if we break it up differently. Let’s try it
another way:

120 = 5 · 24

= 5 · 2 · 12

= 5 · 2 · 3 · 4
= 5 · 2 · 3 · 2 · 2
= 23 · 3 · 5.

Given any integer n, can we factor n into a product of primes?
Furthermore, is this factorization unique? That is, can we do it in

another way?

We answer the first question below in Proposition . That is, yes,
every integer n can be factored into a product of primes. We leave the
question of uniqueness until Theorem 5.8 on page 5.8.

Proposition 5.5. Let n be an integer and n ≥ 2. Then n can be
expressed as a product of one or more primes.

Proof. We prove this result by the principle of complete induction.
Let S(n) be the statement

“n can be expressed as a product of one or more primes.”

We see that S(2) is true since 2 is the product of one prime.
Let k > 2.
Assume that each of S(2), S(3), . . . , S(k − 1) is true.
〈We just assumed that any integer smaller than k can be written as a
product of one or more primes. We now want to use this information
to show that k can be written as a product of one or more primes. We
break the proof into two cases: when k is a prime and when k is not a
prime.〉
Case 1: Suppose that k is prime.
Then k is the product of one prime.
Hence S(k) is true.
Case 2: Suppose that k is not prime.
Thus k = a · b where a and b are integers with 2 ≤ a ≤ k − 1 and
2 ≤ a ≤ k − 1.
By assumption S(a) and S(b) are true.
Since S(a) is true we have that a = p1p2 . . . pr where p1, p2, . . . , pr are
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primes.
Since S(b) is true we have that b = q1q2 . . . qs where q1, q2, . . . , qs are
primes.
Then k = ab = p1p2 . . . prq1q2 . . . qs is a product of primes.
Hence S(k) is true.
〈In either case, S(k) is true. Since we have dealt with the only two
cases that can occur, this concludes the proof of this proposition.〉 �

5.3. Applications to number theory

In this section we give proofs of two famous theorems in mathemat-
ics: Euclid’s proof showing that there are an infinite number of primes,
and a proof of the fundamental theorem of arithmetic.

We begin with the primes. The following is a list of the first 100
primes:

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541

Here is a question: How many primes are there? Are there ten million
primes? Are there a billion primes? Or do the primes never end, that
is, are there an infinite number of primes? The answer is that there
are an infinite number of primes. The first person to prove this fact
was Euclid.

Theorem 5.6 (Euclid). There are infinitely many primes.

Proof. We prove the theorem by contradiction.
Suppose that there are only finitely many primes.
Suppose that they are p1, p2, . . . , pm are all the primes.
Set N = p1p2 · · · pm + 1.
By Proposition 5.5, N must factor into a product of primes.
Hence there must be a prime that divides N .
The only primes are p1, p2, . . . , pm.
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Hence pk must divide N for some 1 ≤ k ≤ m.
For notational simplicity, let us assume that p1 is a divisor of N . (The
same proof will work for other k.)
Thus p1x = N for some integer x.
But then p1x = p1p2 · · · pm + 1.
So, p1(x− p2 · · · pm) = 1.
Thus p1 divides 1.
Since p1 is a positive integer we must have that p1 = 1. Since p1 is a
prime, p1 6= 1.
This gives a contradiction.
Therefore, there are infinitely many primes. �

We now give a proof of the fundamental theorem of arithmetic.
Consider the integer n = 504. We saw in Prop 5.5 that n must factor
into primes. Note that n = 2 · 2 · 2 · 3 · 3 · 7. Is there some other way
to factor n into primes? How about n = 3 · 2 · 2 · 3 · 7 · 2? We see that
the above two factorizations of n are the same. We have just changed
the ordering of the primes. It turns out that there is no other way to
factor n into primes except for just rearranging the above primes. This
is a fact for any positive integer greater than or equal to 2. We will
prove this fact in Theorem 5.8. But first we need a lemma.

Lemma 5.7. Suppose that p is prime and a1, a2, . . . , an are positive
integers greater than one. If p|a1 · a2 · · · an, then p divides ai for some
i with 1 ≤ i ≤ n.

Proof. Let p be a prime.
〈The prime p is fixed throughout this proof and does not change. We
give a proof using induction on n.〉
Let S(n) be the statement

If p|a1 · a2 · · · an where a1, a2, . . . , an are positive integers,
then p divides ai for some i with 1 ≤ i ≤ n.”

We first deal with the case where n = 2.
Suppose that p|a1a2.
Then Theorem 4.67 shows that p|a1 or p|a2.
Hence S(2) is true.
Let k be an integer with k ≥ 2.
Assume that S(k) is true.
Suppose that p|a1a2 · · · akak+1 where a1, a2, · · · ak, ak+1 are positive in-
tegers.
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By Theorem 4.67 p|a1a2 · · · ak or p|ak+1.
If p|ak+1, then S(k + 1) is true.
If p|a1a2 · · · ak, then since S(k) is true we have that p|ai for some inte-
ger i with 1 ≤ i ≤ k.
Hence S(k + 1) is true.
Therefore, by induction S(n) is true for all n with n ≥ 2. �

Theorem 5.8 (Fundamental theorem of arithmetic). Let n be an
integer with n ≥ 2. Then n factors into a product of primes. Moreover,
the factorization is unique apart from the ordering of the prime factors.

Proof. By Proposition 5.5 we have that n factors into a product
of primes.
Suppose that n factors into two different prime factorizations.
By dividing off the comman factors we may assume that

n = p1p2 · · · pk = q1q2 · · · qm
where p1, p2, . . . pk, q1, q2, . . . , qm are primes and pi 6= qj for all 1 ≤ i ≤ k
and 1 ≤ j ≤ m.
Since p1p2 · · · pk = q1q2 · · · qm we see that p1 divides q1q2 · · · qm.
By Lemma 5.7 we have that p1|qi for some i with 1 ≤ i ≤ m.
Since qi is prime, the only positive divisors of qi are 1 and qi.
Since p1 is not equal to 1 we must have that p1 = qi.
But this contradicts the fact that pi 6= qj for all 1 ≤ i ≤ k and
1 ≤ j ≤ m.
Hence n factors uniquely (up to rearrangement) into a product of
primes. �

5.4. Exercises

5.4.1. Exercises for section 5.1.

(1) Prove the following by inducton:
(a) 1 + 3 + 5 + · · ·+ (2n− 1) = n2, for n ≥ 1.
(b) 3n < 4n, for n ≥ 1.

(c) 5 + 8 + 11 + · · ·+ (3n+ 2) =
3n2 + 7n

2
, for n ≥ 1.

(d) n2 < 2n for n ≥ 5.

(e)
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n(n+ 1)
=

n

n+ 1
, for n ≥ 1.

(f) n! > 3n, for n ≥ 7.
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(g) 3 divides 4n − 1, for n ≥ 1.
(h) 6 divides n3 + 5n, for n ≥ 1.

(i)
n∑
i=1

2i = 2n+1 − 2, for n ≥ 1.

(j)
n∑
i=1

1

(2i− 1)(2i+ 1)
=

n

2n+ 1
, for n ≥ 1.

(k) 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
, for n ≥ 1.

(2) Let n and m be integers. Suppose that n ≥ 2. Suppose that
a ≡ b(mod n). Prove the following by induction on m:

am ≡ bm(mod n) for all m ≥ 1.

[Hint: Notice that ak+1 − bk+1 = a · ak − a · bk + a · bk − b · bk.]

5.4.2. Exercises for section 5.2. PUT SOME EXERCISES IN
HERE.

5.4.3. Exercises for section 5.3. PUT SOME EXERCISES IN
HERE.

5.5. Fun math facts

Recall that in Theorem 5.6 we proved that there are infinitely many
primes. A question one could ask is “how are the primes distributed
amongst the natural numbers?” We give one way to think about this
question. Let π(x) be the number of primes p that satisfy the bound
1 ≤ p ≤ x. For example, suppose that x = 31. Below we have listed
all the numbers between 1 and 31. The primes are circled.

2© 3©, 4, 5©, 6, 7©, 8, 9, 10, 11©, 12, 13©, 14, 15, 16, 17©, 18, 19©, 20,
21, 22, 23©, 24, 25, 26, 27, 28, 29©, 30, 31©, . . .

We see that π(31) = 11.
Look at how the primes are distributed in the above list. Do you

think there is any pattern to π(x)? What happens as x gets larger
and larger? How many primes are there between 1 and x ? What is
amazing is that people have given formulas that estimate the answer
to this problem. For example, a famous theorem called the prime
number theorem states that as x goes to infinity π(x) is estimated by
x/ ln(x). This is amazing that such a simple function can approximate
such complex behavior that exists in how the primes are distributed
throughout the numbers. Look at table 1. Look at how well x/ ln(x)
approximates π(x).
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x π(x) x/ ln(x)
31 11 9.03
100 25 21.71

10000 1229 1085.74
1000000 78498 72382.4

1000000000 50847534 48254942
Table 1. Values of π(x)



Chapter 6
Sets

Quote or pun (Sets and the City?)
UNION IS STRENGTH—AESOP???
Brief intro paragraph on sets. Refer back to Basic Set Theory

chapter.
FOR THE BASIC SET THEORY SECTION: NOTE THAT COMMA

MEANS “AND” IN STATEMENTS LIKE x, y ∈ A.

6.1. Subsets

Definition 6.1. Let A and B be sets. We say that A is a subset
of B if every element of A is an element of B. We denote that A is a
subset of B by writing A ⊆ B.

In other words, the statement “A ⊆ B” means the same thing as
the statement “If x ∈ A, then x ∈ B.”

Too Much Information 6.2. Some books use the notation A ⊂
B instead of A ⊆ B.

Too Much Information 6.3. If A ⊆ B, we occasionally say that
B is a superset of A and write B ⊇ A.

Mediocre Pun 6.4. We can visualize a “superset” as a set wearing
a cape and flying around saving people.

Example 6.5. Let A = {a, b, c} and B = {a, b, c, d}. Then A ⊆ B
by Def. 6.1, because every element of A is an element of B. Specifically,
a ∈ B, b ∈ B, and c ∈ B, and a, b, and c are all of the elements of A.
However, B is not a subset of A, because d ∈ B, but d /∈ A.

79
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PICTURE: VENN DIAGRAM TO GO WITH THIS EXAMPLE.

Example 6.6. We have that Z ⊆ Q by Def. 6.1, because every
element of Z is an element of Q. In other words, Z ⊆ Q because every
integer is a rational number. Note that we cannot check one element
at a time, as we did in Example 6.5, because Z has infinitely many
elements.

Also note that Q is not a subset of Z, because 1
2
∈ Q, but 1

2
/∈ Z.

Check for Understanding 6.7.

(1) Let Θ = {a, b, c}, Υ = {a, b, c, d}, Φ = {a, b, d}. Which of
the following statements are true: Θ ⊆ Υ? Υ ⊆ Θ? Υ ⊆ Φ?
Φ ⊆ Υ? Φ ⊆ Θ? Θ ⊆ Φ?

(2) Which of the following statements are true: N ⊆ Z? Z ⊆ N?

(3) Is the set of all negative real numbers a subset of Q?

(4) Given that x ∈ B and B ⊆ H, does Def. 6.1 apply? If so,
what conclusion can you make?

(5) Given that x ∈ H and B ⊆ H, does Def. 6.1 apply? If so,
what conclusion can you make?

(6) Given that α ∈ ∆, what additional information would you
need in order for Def. 6.1 to imply that α ∈ Γ?

Too Much Information 6.8. It will happen very frequently in
your later math courses that you will be asked to prove that one set is
a subset of another. The approach in Example ?? is extremely typical.
That is, we have:

One common way to show A ⊆ B: First let x ∈ A. Then show x ∈ B.

Theorem 6.9. If A, B, and C are sets such that A ⊆ B and
B ⊆ C, then A ⊆ C.
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Proof. We will show that if x ∈ A, then x ∈ C.
Let x ∈ A. (Note: See Remark 6.12.)
Then x ∈ B, by definition of “subset,” because we know that x ∈ A
and A ⊆ B.
Then x ∈ C, by definition of “subset,” because we know that x ∈ B
and B ⊆ C.
Therefore the statement “If x ∈ A, then x ∈ C.” is true.
Therefore A ⊆ C, by definition of “subset.” �

Example 6.10 (Common Mistake). Here’s a student mistake we’ve
seen many times. Can you find the error(s)?

Show that if A, B, and C are sets such that A ⊆ B and B ⊆ C,
then A ⊆ C.

Proof. We will show that x ∈ A and x ∈ C.
x ∈ A and x ∈ B, because A ⊆ B.
x ∈ B and x ∈ C, because B ⊆ C.
Therefore A ⊆ C, by definition of “subset.” �

There are two mistakes here. One is that the variable x was never
introduced. Remember to introduce all variables. (IT WOULD BE
NICE TO HAVE A “COMMON MISTAKES” SECTION OR SOME-
THING LIKE THAT TO REFER BACK TO HERE.) The other prob-
lem is that the student seems to think that the definition of A ⊆ C
is “x ∈ A and x ∈ C.” Read Def. 6.1 again. The correct definition
of A ⊆ C is “If x ∈ A, then x ∈ C.” The point is that starting
from the information that x ∈ A, we must end with the information
that x ∈ C. That’s what “if-then” means. The statement “x ∈ A
and x ∈ C” means that we know both “x ∈ A” and “x ∈ C” simul-
taneously. Remember that P ⇒ Q is not the same as P and Q. (IT
WOULD BE NICE TO HAVE A “COMMON MISTAKES” SECTION
OR SOMETHING LIKE THAT TO REFER BACK TO HERE.)

Too Much Information 6.11. Note that the empty set is a sub-
set of every other set. For by Def. 6.1, we have that ∅ ⊆ B is equivalent
to the statement “If x ∈ ∅, then x ∈ B.” This statement is vacuously
true, because the empty set does not contain any elements.

Too Much Information 6.12. ACTUALLY THIS TECHNI-
CALITY HAPPENS IN EVERY SINGLE “FOR ALL” PROOF. SO
WE SHOULD MENTION THIS IN THE PROOFS CHAPTER.

There is a small technicality in Example ??. At one point in the
proof, we wrote “Let x ∈ A.” But what if A is the empty set? Then
we cannot write “Let x ∈ A,” because A does not have any elements.
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So it might be slightly more precise to split into cases here, as in:
“Case 1: A = ∅. Then A ⊆ C is vacuously true—see Remark 6.11.
Case 2: A 6= ∅. Let x ∈ A . . . ” In practice, though, mathematicians
never do this. Because Case 1 here is always vacuously true, we always
proceed directly to Case 2—we never bother splitting into cases in this
situation. But we think it’s worth pointing out, because in general you
should never write a sentence like “Let x ∈ A” without first asking
yourself, “But what if A = ∅?”

MAYBE WE CAN INSERT A YELLOW “CAUTION” ROAD
SIGN HERE?

Too Much Information 6.13. When A ⊆ B, mathematicians
sometimes say that “B contains A.” Careful! When x ∈ B, mathemati-
cians also sometimes say that “B contains x.” The word “contains”
means two very different things in these two sentences. In the first
sentence, it means, “A is a subset of B.” In the second sentence, it
means, “x is an element of B.” This is not the same thing! We’ll have
more to say about this later on.

Assumption 6.14. Two sets are equal iff each is a subset of the
other. That is, A = B iff A ⊆ B and B ⊆ A.

Assumption 6.14 essentially tells us what it means for two sets to
be equal, namely, that they contain exactly the same elements.

Too Much Information 6.15. Some books refer to Assumption
6.14 as the definition of set equality. In set theory, Assumption 6.14 is
sometimes called the Axiom of Extensionality.

Example 6.16. Prove that if A ⊆ B and B ⊆ C and C ⊆ D and
D ⊆ A, then A = C.

Proof. Let A,B,C,D be sets such that A ⊆ B and B ⊆ C and
C ⊆ D and D ⊆ A.
We will show that A = C.
To do so, we will show that A ⊆ C and C ⊆ A.
We know that A ⊆ B and B ⊆ C, so by Theorem 6.9, it follows that
A ⊆ C.
Also, we know that C ⊆ D and D ⊆ A, so by Theorem 6.9, it follows
that C ⊆ A. Therefore A ⊆ C and C ⊆ A.
So by Assumption 6.14, A = C. �
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Too Much Information 6.17. It will happen very frequently in
your later math courses that you will be asked to prove that two sets
are equal. The approach in Example 6.16 is extremely typical. That
is, we have:

One common way to show A = B, where A and B are sets:
First show A ⊆ B. Then show B ⊆ A.

There’s one special case that’s worth mentioning. Namely, when
you’re trying to show that a set equals the empty set, it’s often best to
use contradiction. Begin by temporarily assuming that the set is not
empty—that is, that it contains at least one element.

One common way to show A = ∅:
Temporarily there exists x ∈ A. Then derive a contradiction.

Example 6.18. Let ∆ = {x ∈ R | x + 1 = x + 2}. Prove that
∆ = ∅.

Proof. Temporarily assume that there exists x ∈ ∆.
Then x+ 1 = x+ 2, by definition of ∆.
So 1 = 2, by subtracting x from both sides.
Contradiction.
So there does not exist x ∈ ∆.
Therefore ∆ = ∅. �

Too Much Information 6.19. If you really wanted to, you could
use Assumption 6.14 in Example 6.18. The statements “If x ∈ ∆, then
x ∈ ∅” and “If x ∈ ∅, then x ∈ ∆” are both vacuously true. So ∆ and
∅ are each subsets of each other, hence equal.

Definition 6.20. Let A and B be sets. We say that A is a proper
subset of B if A ⊆ B and A 6= B. We denote that A is a proper subset
of B by writing A ⊂ B.

Example 6.21. The set {a, b, c} is a proper subset of {a, b, c, d}.
WARNING SYMBOL, YELLOW CAUTION SIGN, WHATEVER

Too Much Information 6.22. Recall Remark 6.2—so the nota-
tion A ⊂ B is ambiguous! Depending what book you’re reading, it can
either mean “A is a subset of B” or “A is a proper subset of B.”
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Books that use the alternative notation A ⊂ B for “A is a subset
of B” also sometimes use the notation A ( B for “A is a proper subset
of B.”

Mediocre Pun 6.23. We can visualize a “proper” subset as a
subset with elegant table manners.

Examples from number theory

Example 6.24. Let Σ = {n ∈ Z | n is even}. Let ∆ = {n ∈
Z | 4 divides n}. Show that ∆ ⊆ Σ.

Proof. We’ll show that if n ∈ ∆, then n ∈ Σ. Let n ∈ ∆. We’ll
show that n ∈ Σ.
We know that n ∈ Z and 4|n, by definition of ∆.
So n = 4k for some k ∈ Z, by definition of “divides.”
Then n = 2(2k).
We know 2k ∈ Z, because 2, k ∈ Z and Z is closed under multiplication.
So n is even, by definition of “even.”
Because n ∈ Z and n is even, therefore n ∈ Σ, by definition of Σ.
Therefore the statement “If n ∈ ∆, then n ∈ Σ” is true.
Therefore ∆ ⊆ Σ, by definition of “subset.” �

Let’s take a step back and think about what we just did. We showed
that every multiple of 4 is even. That’s what the statement ∆ ⊆ Σ was
saying.

Examples from the real line and plane
WHERE DO WE INTRODUCE INTERVAL NOTATION? BASIC

SET THEORY?

Example 6.25. Let a, b, c, d ∈ R such that a < b and c < d. Show
[c, d] ⊆ (a, b) iff a < c < d < b.

Proof. First we will show that if [c, d] ⊆ (a, b) then a < c < d < b.
Let a, b, c, d ∈ R such that a < b and c < d and [c, d] ⊆ (a, b).
We will show that a < c < d < b.
We know that c, d ∈ [c, d] by definition of “closed interval,” because
c ≤ c ≤ d and c ≤ d ≤ d.
So c, d ∈ (a, b) by definition of “subset.”
So a < c < b and a < d < b, by definition of “open interval.”
So a < c < d < b, because we are given that c < d.

Now we will show that if a < c < d < b, then [c, d] ⊆ (a, b).
Let a, b, c, d ∈ R such that a < b and c < d and a < c < d < b.
We will show that [c, d] ⊆ (a, b).
Let x ∈ [c, d]. We will show that x ∈ (a, b).
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We know that c ≤ x ≤ d, by definition of “closed interval.”
Therefore a < x, because a < c and c ≤ x.
Also, x < b, because x ≤ d and d < b.
Therefore x ∈ (a, b) by definition of “open interval,” because a < x < b.
So [c, d] ⊆ (a, b) by definition of “subset,” because the statement “If
x ∈ [c, d], then x ∈ (a, b)” is true.

Therefore [c, d] ⊆ (a, b) iff a < c < d < b, because the statements
“if [c, d] ⊆ (a, b) then a < c < d < b” and “if a < c < d < b, then
[c, d] ⊆ (a, b)” are both true. �

FORMATTING: I THINK THIS WOULD LOOK BETTER WITH
SPACE BETWEEN PARAGRAPHS AND NO INDENTING.

Definition 6.26. Let A ⊆ R. We say that A is an open subset
of R if for all x ∈ A, there exist c, d ∈ R such that c < x < d and
(c, d) ⊂ A.

Example 6.27. Let P = {x ∈ R | x > 0}. Prove that P is an open
subset of R.

Proof. We will show that for all x ∈ P , there exist c, d ∈ R such
that c < x < d and (c, d) ⊂ P .
Let x ∈ P . We will show that there exist c, d ∈ R such that c < x < d
and (c, d) ⊂ P .
Let c = x

2
and d = 2x.

We know x > 0, by definition of P .
So c < x < d, because x > 0.
Now we will show that (c, d) ⊂ P .
Let y ∈ (c, d). We will show that y ∈ P .
We know that c < y, by definition of “open interval.”
We know 0 < c, because c = x

2
and x > 0.

So y > 0, because c < y and 0 < c.
Therefore y ∈ P , by definition of P .
So the statement “If y ∈ (c, d), then y ∈ P” is true.
So (c, d) ⊂ P , by definition of subset.
So the statement “For all x ∈ P , there exist c, d ∈ R such that c < x <
d and (c, d) ⊂ P” is true.
Therefore P is an open subset of R, by definition of “open.” �

Figure ?? illustrates this proof.

Figure showing the open interval (x
2
, 2x) on the real line, with x in

the middle.
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Too Much Information 6.28. You will see open sets a lot if you
take a course in Analysis or Topology.

6.2. Unions, intersections, and complements

In this section, we will learn about ways to make new sets from old
ones.

Definition 6.29. Let A,B be sets. We define the union of A and
B, denoted A ∪B, by

A ∪B := {x | x ∈ A or x ∈ B}.

HAVE WE MENTIONED “:=” BEFORE?
Figure ?? shows a Venn diagram for the union of A and B.

Definition 6.30. Let A,B be sets. We define the intersection of
A and B, denoted A ∩B, by

A ∩B := {x | x ∈ A and x ∈ B}.

Figure ?? shows a Venn diagram for the intersection of A and B.

Example 6.31. Let Γ = {3, 7, 9, 47} and Ψ = {7, 8, 9, 10}. Then
Γ ∪ Ψ = {3, 7, 8, 9, 10, 47} and Γ ∩ Ψ = {7, 9}. Let Λ = {22,−6, 3}.
Then Λ ∩Ψ = ∅ and (Λ ∩ Γ) ∪Ψ = {3, 7, 8, 9, 10}.

Example 6.32. Let Θ = {x ∈ R | x > 0}. Then Θ∩Z = N. HAVE
WE DECIDED IF N CONTAINS 0?

Example 6.33. Suppose a ∈ (X ∪ Y ) ∩ Z. What can we conclude
about a? By definition of intersection, a is in both X ∪ Y and Z. By
definition of union, a is in X or a is in Y . So a is either in both X and
Z, or a is in both Y and Z.

Check for Understanding 6.34.

(1) Let A = {1, 2, 3} and B = {3, 4, 5}. Describe {3} and
{1, 2, 3, 4, 5} in terms of A and B.

(2) What is Z ∩ (−4, 5]?

(3) Suppose a ∈ (X ∩ Y ) ∪ Z. What can we conclude about a?
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Example 6.35. Let A and B be sets. Show that A ⊆ A ∪B.

Proof. Let x ∈ A.
Then the statement “x ∈ A or x ∈ B” is true.
Therefore x ∈ A ∪B, by definition of “union.” �

Example 6.36. Let A,B, and C be sets. Show that A∩ (B∪C) =
(A ∩B) ∪ (A ∩ C).

Proof. First, we will show that A∩ (B ∪C) ⊆ (A∩B)∪ (A∩C).
Let x ∈ A ∩ (B ∪ C).
Then x ∈ A and x ∈ B ∪ C, by definition of “intersection.”
So x ∈ B or x ∈ C, by definition of “union.”
Case 1: x ∈ B
Then x ∈ A ∩B, by definition of “intersection.”
So x ∈ (A ∩B) ∪ (A ∩ C), by definition of “union.”
Case 2: x ∈ C
Then x ∈ A ∩ C, by definition of “intersection.”
So x ∈ (A ∩B) ∪ (A ∩ C), by definition of “union.”
In either case, we have x ∈ (A ∩B) ∪ (A ∩ C).
So the statement “If x ∈ A∩ (B ∪C), then x ∈ (A∩B)∪ (A∩C).” is
true.
Therefore A∩ (B ∪C) ⊆ (A∩B)∪ (A∩C), by definition of “subset.”

Next, we will show that (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).
Let x ∈ (A ∩B) ∪ (A ∩ C).
Then x ∈ A ∩B or x ∈ A ∩ C, by definition of “union.”
Case 1: x ∈ A ∩B
Then x ∈ A and x ∈ B, by definition of “intersection.”
Then x ∈ B ∪ C, by definition of “union.”
So x ∈ A ∩ (B ∪ C), by definition of intersection.
Case 2: x ∈ A ∩ C
Then x ∈ A and x ∈ C, by definition of “intersection.”
Then x ∈ B ∪ C, by definition of “union.”
So x ∈ A ∩ (B ∪ C), by definition of intersection.
In either case, we have x ∈ A ∩ (B ∪ C).
So the statement “If x ∈ (A∩B)∪ (A∩C), then x ∈ A∩ (B ∪C).” is
true.
Therefore (A∩B)∪(A∩C) ⊆ A∩(B∪C), by definition of “subset.” �

Hence the two sets A ∩ (B ∪C) and (A ∩B) ∪ (A ∩C) are subsets
of each other.
Therefore, A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
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Definition 6.37. Let A,B be sets. We define the difference of
A and B, denoted A \B, by

A \B := {x | x ∈ A and x /∈ B}.

Figure ?? shows a Venn diagram for the intersection of A and B.
VENN DIAGRAM OF A MINUS B

Too Much Information 6.38. Some books write A−B instead
of A \B.

Too Much Information 6.39. The difference of A and B is
sometimes called the relative complement of A with respect to B.

Example 6.40. Let Ω = {2, 4, 6, 8} and Σ = {1, 2, 3, 4}. Then
Ω \ Σ = {6, 8} and Σ \ Ω = {1, 3}. Notice that Ω \ Σ 6= Σ \ Ω.

Example 6.41. Let A = (−2, 5] and B = [4, 5]. Then A \ B =
(−2, 4) and B \ A = ∅.

Sometimes, we have a “universal set” or “universe” which contains
all of the elements that we wish to consider. For example, in number
theory, the universe is often Z. In an analysis course, the universe is
sometimes the real line or plane. When we know what the universal
set is, we can talk about the “complement” of a set.

Definition 6.42. Let A be set, where U is a universal set. The
complement of A, denoted Ac, is the set Ac := U \A. In other words,

Ac = {x /∈ A}.

In other words, the complement of A is the set of all elements not
in A. Figure ?? shows a Venn diagram representing the complement
of a set A.

VENN DIAGRAM FOR COMPLEMENT—PUT GALAXIES IN
THE UNIVERSE

Mediocre Pun 6.43. In Figure ??, notice the galaxies swirling
about the universe.

Too Much Information 6.44. Notice in Def. 6.56 that we do
not need to write Ac = {x ∈ U | x /∈ A}, because all elements are
assumed to be in the universe.
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Too Much Information 6.45. Why do we need to have a uni-
verse in Def. 6.56? The reason is that if we are not careful, then we
will run into serious technical difficulties—logical paradoxes that at one
time threatened to undermine the foundations of mathematics. See the
“Fun Math Facts” at the end of this chapter for more on this.

Too Much Information 6.46. Books vary wildly in their no-
tations for the complement of a set. Some other notations for the
complement of A are A, A′, or A∗. CAUTION! All of these alternate
notations have other meanings in analysis and in topology.

Example 6.47. Suppose the universe U is {1, 2, 3, 4, 5} and A =
{1, 3, 4}. Then Ac = {2, 5}.

Now suppose the universe U is {1, 2, 3, 4, 5, 6} and A = {1, 3, 4}.
Then Ac = {2, 5, 6}.

Notice that to know what the complement of a set is, you must
know what the universe is.

Example 6.48. Suppose the universe is Z. Let Π = {x ∈ Z | x is even }.
Then Πc = {x ∈ Z | x is odd }.

Example 6.49. Suppose the universe is R. Then (−1, 2)c = (−∞,−1]∪
[2,∞), as shown in Figure ??. FIGURE OF THIS ON A NUMBER
LINE.

Example 6.50. Let A be a set. Prove that (Ac)c = A.

Proof. First we will show that (Ac)c ⊆ A.
Let x ∈ (Ac)c.
Then x /∈ Ac, by definition of “complement.”
So x ∈ A, by definition of “complement.”
Therefore (Ac)c ⊆ A, by definition of “subset.”

Now we will show that A ⊆ (Ac)c.
Let x ∈ A.
Then x /∈ Ac, by definition of “complement.”
So x ∈ (Ac)c, by definition of “complement.”
Therefore A ⊆ (Ac)c, by definition of “subset.”

Hence (Ac)c = A. �

Check for Understanding 6.51. Apply the result in Example
6.50 to fill in the blank: ((Ac ∩Bc)c)c = .

Too Much Information 6.52. Here’s a quick one-line proof for
Example 6.50: x ∈ A iff x /∈ Ac iff x ∈ (Ac)c.
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We’ve seen de Morgan’s laws previously, in the logic chapter. The
following two theorems are the set theory versions of de Morgan’s laws.

Theorem 6.53 (de Morgan’s laws). Let A and B be sets. Then

(1) (A ∩B)c = Ac ∪Bc, and

(2) (A ∪B)c = Ac ∩Bc.

Proof. (1) First we will show that (A ∩B)c ⊆ Ac ∪Bc.
Let x ∈ (A ∩B)c.
Then x /∈ A ∩B, by definition of “complement.”
In other words, the statement “x ∈ A ∩B” is false.
So the statement “x ∈ A and x ∈ B” is false, by definition of “inter-
section.”
So x /∈ A or x /∈ B, by de Morgan’s laws for logic.
So x ∈ Ac or x ∈ Bc, by definition of “complement.”
So x ∈ Ac ∪Bc, by definition of “union.”
Therefore, (A ∩B)c ⊆ Ac ∪Bc, by definition of “subset.”

Now we will show that Ac ∪Bc ⊆ (A ∩B)c.
〈This proof is similar to the reverse direction, so as a check for under-
standing, we’ll leave some blanks for you to fill in.〉
Let x ∈ Ac ∪Bc.
Then x ∈ Ac or x ∈ Bc, by definition of “ .”
So x /∈ A or x /∈ B, by definition of “ .”
So the statement “x ∈ A and x ∈ B” is false, by .
So x /∈ A ∩B, by definition of “ .”
So x ∈ (A∩B)c, by definition of “ .” Therefore Ac∪Bc ⊆ (A∩B)c,
by definition of “ .”

Therefore, (A ∩B)c = Ac ∪Bc.
(2) 〈We could do a proof similar to (1) here, but let’s take the

opportunity to show off and do a slick proof.〉
We get (Ac ∩Bc)c = (Ac)c ∪ (Bc)c by substituting Ac for A and Bc for
B in Thm. 6.53 (1).
So (Ac ∩Bc)c = A ∪B, by the result in Example 6.50.
So Ac∩Bc = (A∪B)c, by taking complements of both sides and again
applying the result in Example 6.50. �

Too Much Information 6.54. Wait a minute—in the proof of
(2), did we just use Thm. 6.53 to prove Thm. 6.53? Isn’t that cir-
cular reasoning? No, it’s not circular reasoning. Our proof is fine.
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Here’s why. First we proved (1). Once we did that, then (1) became a
previously proven statement, so we were allowed to use it to prove (2).

Too Much Information 6.55. Take the time to translate de
Morgan’s laws into English and to see why they’re pretty much common
sense when you stop and think about them. For example, Thm. 6.53
(1) says, “It’s not true that x is in both A and B if and only if either
x is not in A or x is not in B.”

Definition 6.56. Let A and B be sets. We say that A and B are
disjoint if A ∩B = ∅.

Example 6.57. The sets N and (−3,−1.5) are disjoint.

Example 6.58. Let A be a set, and let U be the universe. Prove
that A and Ac are disjoint.

Proof. We will show that A ∩ Ac = ∅.
Temporarily assume that there exists x ∈ A ∩ Ac.
Then x ∈ A and x ∈ Ac, by definition of “intersection.”
So x ∈ U \ A, by definition of “complement.”
So x /∈ A, by definition of “difference.”
Contradiction (x ∈ A but x /∈ A).
So there does not exist x ∈ A ∩ Ac.
So A ∩ Ac = ∅.
So A and Ac are disjoint, by definition of “disjoint.” �

Examples from number theory

Example 6.59. For any integer n, we define the set 〈n〉 := {x | x ∈
Z and n divides x}. In other words, 〈n〉 is the set of all multiples of
n. Let a, b ∈ Z, and let d = lcm(a, b). HAVE WE DEFINED LCM???
Prove that 〈a〉 ∩ 〈b〉 = 〈d〉.

Proof. First we will show that 〈a〉 ∩ 〈b〉 ⊆ 〈d〉.
Let x ∈ 〈a〉 ∩ 〈b〉.
Then x ∈ 〈a〉 and x ∈ 〈b〉, by definition of “intersection.”
Then a|x and b|x, by definition of 〈n〉.
So d|x, by NEED A REFERENCE.
So x ∈ 〈d〉, by definition of 〈n〉.
So 〈a〉 ∩ 〈b〉 ⊆ 〈d〉, by definition of subset.
Conversely, 〈d〉 ⊆ 〈a〉 ∩ 〈b〉, because every multiple of d is both a
multiple of a and a multiple of b.
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〈We combined several steps into one in that last line—as an exercise,
you might try spelling it out step-by-step, the way we did in the first
half of the proof.〉
Therefore, 〈a〉 ∩ 〈b〉 = 〈d〉. �

You will see the sets 〈n〉 again if you take a course (or courses) in
Abstract Algebra—they are important examples of subgroups in group
theory and ideals in ring theory.

Examples from the real line and plane

Example 6.60. Let I1 and I2 be open intervals. Prove that I1 and
I2 are disjoint, or I1 ∩ I2 is an open interval.

Proof. By definition of “open interval,” there exist a, b, c, d ∈ R
with a < b and c < d such that I1 = (a, b) and I2 = (c, d).
Without loss of generality, assume that a ≤ c.
〈If it is not true that a ≤ c, then reverse the roles of I1 and I2. It’s
okay to do that, because the statement “I1 and I2 are disjoint, or I1∩I2

is an open interval.” is true iff the statement “I2 and I1 are disjoint,
or I2 ∩ I1 is an open interval.” is true.〉
Case 1: d ≤ b.
By Exercise 7, we have I1 ∩ I2 = (c, d), which is an open interval.
Case 2: c < b < d.
By Exercise 8, we have I1 ∩ I2 = (c, b), which is an open interval.
Case 3: b ≤ c.
In this case, no real number is both less than b and greater than c.
So I1 ∩ I2 = ∅.
So I1 and I2 are disjoint, by definition of “disjoint.”
Therefore I1 and I2 are disjoint, or I1 ∩ I2 is an open interval, because
this statement holds in every case. �

Figure ?? illustrates the three different cases in this proof.

WE NEED SOME DISCUSSION OF “WLOG,” WITH EXAM-
PLES, EXERCISES, ETC. IN THE PROOFS CHAPTER? MAYBE
IN THE “CASES” SECTION OF THE PROOFS CHAPTER? SAM-
PLE EXERCISE: SHORTEN SUCH-AND-SUCH A PROOF WITH
WLOG. FOR EXAMPLE, LET x AND y BE DISTINCT REAL NUM-
BERS. PROVE THERE IS A REAL BETWEEN x AND y. (GOTTA
DEFINE “BETWEEN.”—MAYBE THIS ISN’T THE BEST EXAM-
PLE.)

Check for Understanding 6.61. Express the complement of an
arbitrary open interval as a union of two rays.
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Definition 6.62. Let X ⊆ R. We say X is disconnected if there
exist disjoint nonempty open sets U, V ⊆ R such that X ⊆ U ∪ V . We
say X is connected if it is not disconnected.

Too Much Information 6.63. Intuitively, a set is connected if
it is “all in one piece,” and it is disconnected if it can be separated into
different pieces with a little “room” between them. The open sets in
Definition 6.62 make this notion precise.

Example 6.64. Prove that Z is disconnected.

Proof. Let U = (1/2,∞) and V = (−∞, 1/2).
By Exercise 3, U and V are open subsets of R.
Also, U and V are disjoint, because no real number can be both greater
than 1/2 and less than 1/2.
Also, Z ⊆ U ∪ V , because every integer is either greater than 1/2 or
less than 1/2.
Therefore Z is disconnected, by definition of “disconnected.” �

Too Much Information 6.65. Connectedness is an important
topological property. If you take a Topology class, you will learn a
great deal more about it. You will prove, for example, that R is con-
nected, something that is intuitively obvious but takes some work to
demonstrate.

6.3. Cartesian products

Informal Definition 6.66. An ordered pair is an expression
of the form (a, b), where a and b are any two objects. We say a is the
first coordinate of (a, b) and b is the second coordinate of (a, b).
The most important fact about ordered pairs is the following:

Let (a, b) and (c, d) be two ordered pairs. Then (a, b) = (c, d) iff
a = c and b = d.

In other words, two ordered pairs are equal iff their first coordinates
are equal and their second coordinates are equal.

Example 6.67. True or false: (2,−3) = (−3, 2)?
The answer is “false,” because 2 6= −3, so the two ordered pairs do

not have the same first coordinate.
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This is why ordered pairs have that name—because order matters.
In contrast, {2,−3} = {−3, 2} because those two sets have the same
elements. With sets, order doesn’t matter.

Example 6.68. Let x, y ∈ R such that (x, 6) = (2y, x). Determine
x and y.

We know x = 2y (from the first coordinates) and 6 = x (from the
second coordinates). So 6 = 2y by substitution. So y = 3.

Too Much Information 6.69. If we want to be completely pre-
cise, then we define the ordered pair (a, b) := {a, {a, b}}. You can check
that {a, {a, b}} = {c, {c, d}} iff a = c and b = d, so this definition has
the desired property. The only point here is that it’s possible to define
ordered pairs in terms of sets. In practice, though, mathematicians
almost never think of them that way.

Too Much Information 6.70. Unfortunately, the notation (a, b)
is ambiguous. If a and b are real numbers, then (a, b) could be an
ordered pair, or it could be an open interval. You have to figure out
from context which it is. Sorry about that. But, hey, don’t blame
us—we didn’t make this stuff up.

Definition 6.71. Let A and B be sets. The Cartesian product
(or cross product) of A and B is denoted A×B (read: “A cross B”)
and is defined to be the set

A×B := {(a, b) | a ∈ A, b ∈ B}.

Example 6.72. Let Θ = {1, 2, 3} and Γ = {α, β}. Then Θ × Γ =
{(1, α), (2, α), (3, α), (1, β), (2, β), (3, β)}. Notice that Θ × Γ 6= Γ × Θ,
because (1, α) ∈ Θ× Γ but (1, α) /∈ Γ×Θ.

We can visualize Θ× Γ as in Figure ??.

Check for Understanding 6.73. Draw a picture to represent
{−1, 2} × [−3, 4.5), and name five elements of this set.

Too Much Information 6.74. Note that if A and B are finite
sets, where A contains n elements and B contains m elements, then
A×B contains nm elements.

In general, you can visualize Cartesian products by putting the first
coordinates along a horizontal axis and the second coordinates along a
vertical axis. You’ve been doing this since you started graphing lines
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in high school algebra. Notice that we’re avoiding saying “x-axis” and
“y-axis,” because sometimes we use different variables.

Example 6.75. Let Γ,∆,Θ be sets. Prove that if Γ and ∆ are
disjoint, then Γ×Θ and ∆×Θ are disjoint.

Proof. 〈Our goal is to show that Γ×Θ and ∆×Θ do NOT have
any elements in common. The word “not” tips us off that proof by
contradiction is probably the way to go.〉
Temporarily assume that Γ×Θ and ∆×Θ are not disjoint.
Then (Γ×Θ) ∩ (∆×Θ) 6= ∅, by definition of “disjoint.”
So there exists (a, b) ∈ (Γ×Θ) ∩ (∆×Θ).
So (a, b) ∈ Γ×Θ and (a, b) ∈ ∆×Θ, by definition of “intersection.”
So a ∈ Γ and a ∈ ∆, by definition of “Cartesian product.”
So a ∈ Γ ∩∆, by definition of “intersection.”
So Γ ∩∆ 6= ∅.
But Γ ∩∆ = ∅, by definition of “disjoint.”
Contradiction.
Therefore Γ×Θ and ∆×Θ are disjoint. �

Example 6.76. Let A, B, and C be sets. Prove that A×(B∪C) =
(A×B) ∪ (A× C).

Proof. First we will show that A× (B ∪C) ⊆ (A×B)∪ (A×C).
Let (x, y) ∈ A× (B ∪ C).
〈Note that A× (B∪C) is a Cartesian product, so an arbitrary element
of A× (B ∪ C) is an ordered pair.〉
So x ∈ A and y ∈ B ∪ C, by definition of “Cartesian product.”
So y ∈ B or y ∈ C, by definition of “union.”
Case 1: y ∈ B.
Then y ∈ A and y ∈ B, so (x, y) ∈ A× B, by definition of “Cartesian
product.”
Then (x, y) ∈ (A×B) ∪ (A× C), by definition of “union.”
Case 2: y ∈ C.
Then x ∈ A and y ∈ C, so (x, y) ∈ A× C, by definition of “Cartesian
product.”
Then (x, y) ∈ (A×B) ∪ (A× C), by definition of “union.”
In either case, we have (x, y) ∈ (A×B) ∪ (A× C).
So we have shown that every element of A× (B ∪ C) is an element of
(A×B) ∪ (A× C).
Therefore A× (B ∪C) ⊆ (A×B)∪ (A×C), by definition of “subset.”

Now we will show that (A×B) ∪ (A× C) ⊆ A× (B ∪ C).
〈This proof is similar to the reverse direction, so as a check for under-
standing, we’ll leave some blanks for you to fill in.〉
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Let (x, y) ∈ .
Then (x, y) ∈ or (x, y) ∈ , by definition of “union.”
Case 1: (x, y) ∈ A×B
Then x ∈ A and y ∈ B, by definition of .
So y ∈ B ∪ C, by definition of .
So (x, y) ∈ A× (B ∪ C), by definition of .
Case 2:
Then x ∈ A and y ∈ C, by definition of Cartesian product.
So y ∈ , by definition of “union.”
So (x, y) ∈ A× (B ∪ C), by definition of .
In either case, we have .
So every element of is an element of .
Therefore (A×B)∪ (A×C) ⊆ A× (B ∪C), by definition of . �

Here’s a one-line summary of our proof: (x, y) ∈ A × (B ∪ C) iff
x ∈ A and (y ∈ B or y ∈ C) iff (x, y) ∈ (A×B) ∪ (A× C).

Figure ?? shows one way to visualize the statement in this theorem.
THREE GRAPHS: ONE WITH A×B, ONE WITH A×C, AND ONE
WITH A× (B ∪ C). HAVE B AND C OVERLAP A LITTLE.

Check for Understanding 6.77. Let A, B, and C be sets. Draw
a picture that represents A × (B ∩ C). Fill in the blank to make a
true statement, along the lines of Example 6.76: A× (B ∩C) = .
In Exercise 2, you will be asked to prove that your answer is correct.

Example 6.78. I DON’T KNOW IF I LIKE THIS EXAMPLE.
Suppose x ∈ A and y ∈ B. Prove that there exists a unique ordered
pair (a, b) such that (a, b) ∈ ({x} ×B) ∩ (A× {y}).

Proof. First we will show existence.
We will show that (x, y) ∈ ({x} ×B) ∩ (A× {y}).
We know (x, y) ∈ {x} × B, by definition of “Cartesian product,” be-
cause x ∈ {x} and y ∈ B.
Also, (x, y) ∈ A × {y}, by definition of “Cartesian product,” because
x ∈ A and y ∈ {y}.
So (x, y) ∈ ({x} ×B) ∩ (A× {y}), by definition of “intersection.”
Now we will show uniqueness. In other words, we will show that if
(c, d) ∈ ({x}×B)∩ (A×{y}) and (r, s) ∈ ({x}×B)∩ (A×{y}), then
(c, d) = (r, s).
We know (c, d) ∈ {x}×B and A×{y}, by definition of “intersection.”
So c ∈ {x}, by definition of “Cartesian product,” because (c, d) ∈
{x} ×B.
So c = x.
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〈This also tells us that d ∈ B, but we won’t be using that fact, so we’ll
leave it out of the proof.〉
Also d ∈ {y}, by definition of “Cartesian product,” because (c, d) ∈
A× {y}.
So d = y.
So (c, d) = (x, y), because c = x and d = y.
A similar argument, using (r, s) in place of (x, y), shows that (r, s) =
(x, y).
So (c, d) = (x, y).
Therefore there exists a unique ordered pair (a, b) such that (a, b) ∈
({x} ×B) ∩ (A× {y}). �

Figure ?? is a “proof without words” for this example.

HAVE FINITE PRODUCTS, n-TUPLES HERE OR IN FAMILIES
SECTION? PROBABLY HERE.
Examples from number theory

An element of Z × Z is called a lattice point. We can visualize
the set Z× Z as in Fig. ??.

FIGURE OF LATTICE POINTS

Example 6.79. Let (a, b) be a lattice point with a > 0 and b > 0.
Prove that there exists t ∈ R such that 0 < t < 1 and (ta, tb) is a
lattice point iff a and b are not relatively prime.

Proof. First, we will show that if there exists t ∈ R such that
0 < t < 1 and (ta, tb) is a lattice point, then a and b are not relatively
prime.
Let t ∈ R such that 0 < t < 1 and (ta, tb) is a lattice point.
Then (ta, tb) ∈ Z× Z, by definition of “lattice point.”
So ta, tb ∈ Z, by definition of “Cartesian product.”
Then t = ta/a, so t ∈ Q, by definition of Q.
Let r, s be positive integers such that t = r/s and the fraction r/s is
in lowest terms, that is, so that r and s are relatively prime.
Note that s > 1, because t < 1.
Then ra/s ∈ Z, by substitution.
So s|ra, using the definition of “divides.”
Therefore s|a, by Lemma ??.
A similar argument shows that s|b.
Therefore a and b are not relatively prime, because they have a common
factor greater than 1.

Next, we will show that if a and b are not relatively prime, then
there exists t ∈ R such that 0 < t < 1 and (ta, tb) is a lattice point.
Let d = gcd(a, b).
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Then d > 1, by definition of “relatively prime.”
Let t = 1/d.
Note that 0 < t < 1.
Also, d|a and d|b, by definition of “gcd.”
So ta, tb ∈ Z, using the definition of “divides.”
So (ta, tb) ∈ Z× Z, by definition of “Cartesian product.”
So (ta, tb) is a lattice point, by definition of “lattice point.” �

Visually, the statement in this example is saying that the line seg-
ment between (a, b) and the origin contains a lattice point other than
the two endpoints iff a and b have a common factor greater than 1. See
Figure ??. FIGURE SHOULD SHOW BOTH CASES—ONE WHERE
THEY ARE COPRIME AND ONE WHERE THEY ARE NOT.

Examples from the real line and plane
We visualize the set R as a straight line. Indeed, sometimes we

call R the “real line.” We can visualize the set R × R as a flat plane,
sometimes called the “Cartesian plane.” We often write R2 instead of
R× R.

Definition 6.80. Let (x1, y1), (x2, y2) ∈ R2. The distance from
(x1, y1) to (x2, y2), denoted dist((x1, y1), (x2, y2)), is defined by:

dist((x1, y1), (x2, y2)) :=
√

(x1 − x2)2 + (y1 − y2)2.

Too Much Information 6.81. This “distance” is sometimes called
“Euclidean distance” or “straight-line distance.” As you will learn if
you take an Analysis class, there are other notions of distances in the
plane (as well as in other sets).

Too Much Information 6.82. MAYBE MAKE THIS A “COM-
PLETELY IGNORABLE SIDE COMMENT” WITHIN A “COMPLETELY
IGNORABLE SIDE COMMENT” ENVIRONMENT??? Of course
you’ll recognize the equation in Def. 6.80 as the familiar distance
formula. In high school algebra, you derive this formula from the
Pythagorean theorem. In order to do so, you must first make some
assumptions about distances in the plane. Here, we’ve taken a subtly
different approach, where we don’t make any assumptions at all about
distance—instead, we simply define the word “distance.”

Example 6.83. Let x,y ∈ R2. Prove that dist(x,y) = 0 iff x = y.

Proof. First we will show that if dist(x,y) = 0, then x = y.
We know x,y ∈ R2, so we know x = (a, b) and y = (c, d) for some
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a, b, c, d ∈ R, by definition of “Cartesian product.”
Then

√
(a− c)2 + (b− d)2 = 0, by definition of “distance.”

Squaring both sides, we get (a− c)2 + (b− d)2 = 0.
Now, we must have (a− c)2 = 0 and (b− d)2 = 0, because (a− c)2 ≥ 0
and (b− d)2 ≥ 0.
So a− c = 0 and b− d = 0.
So a = c and b = d.
Therefore x = (a, c) = (b, d) = y.
Now we will show that if x = y, then dist(x,y) = 0.
Again, take x = (a, b) and y = (c, d).
So a = c and b = d, because x = y.
So dist(x,y) =

√
(a− c)2 + (b− d)2 = 0, by definition of “distance.”

�

Definition 6.84. Let x ∈ R2 and ε ∈ R. The open disc of radius
ε centered at x, denoted B(x, ε), is defined by:

B(x, ε) := {y ∈ R2 | dist(x,y) < ε}.

Figure ?? shows a picture of an open disc.

Too Much Information 6.85. At some point, you may call an
open disc a “circle.” Wrong! Wrong! Wrong again, we say! In math, a
circle consists only of the “edge” surrounding the open disc. The open
disc is the inside. The circle is the skin, the open disc is the guts and
all the other internal organs. The circle is the wrapper, the open disc
is the candy. The circle is the orange peel, the open disc is the orange
fruit. We realize we’re going completely overboard here, but we can’t
seem to help ourselves.

Check for Understanding 6.86. Let x ∈ R2 and r, s ∈ R. Sup-
pose that r < s. Consider the two sets B(x, r) and B(x, s). Which
one must be a subset of the other? Prove that your answer is correct.

Definition 6.87. Let U ⊂ R2. We say U is open if for all x ∈ U ,
there exists ε > 0 such that B(x, ε) ⊆ U .

Too Much Information 6.88. Recall that we’ve seen open sub-
sets of the real line before in Def. 6.26. Open subsets of the plane
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are of fundamental importance in real analysis, topology, and complex
analysis.

Example 6.89. Let U = {(a, b) ∈ R2 | b > 0}. (The set U is called
the upper half-plane. It plays an important role in complex analysis.)
Show that U is open.

Proof. We will show that x ∈ U , there exists ε > 0 such that
B(x, ε) ⊆ U .
Let (a, b) ∈ U .
We will show that B((a, b), b) ⊆ U .
Let (c, d) ∈ B((a, b), b).
Then dist((a, b), (c, d)) < b, by definition of “open disc.”

So
√

(a− c)2 + (b− d)2 < b, by definition of “distance.”
Note that (a− c)2 ≥ 0, so (b− d)2 ≤ (a− c)2 + (b− d)2.

Therefore b− d ≤ |b− d| =
√

(b− d)2 ≤
√

(a− c)2 + (b− d)2 < b.
So d > 0.
So (c, d) ∈ U , by definition of U .
Therefore B((a, b), b) ⊆ U , by definition of “subset.”
Therefore U is open, by definition of “open.” �

Figure ?? shows a picture to illustrate this proof.

Any concept in R that is formulated in terms of open sets carries
over to R2. For example:

Definition 6.90. Let X ⊆ R2. We say X is disconnected if there
exist disjoint nonempty open sets U, V ⊆ R2 such that X ⊆ U ∪V . We
say X is connected if it is not disconnected.

Example 6.91. Let X = {(x, 1/x) : x ∈ R, x 6= 0}. (You’ll
recognize X as a hyperbola, more specifically the graph of the function
y = 1/x.) Prove that X is a disconnected subset of R2.

Proof. Let U = {(a, b) ∈ R2 | b > 0} and V = {(a, b) ∈ R2 | b <
0}.
By Example 6.89 and Exercise 5, U and V are open subsets of R2.
Also, U and V are disjoint, because there is no ordered pair (a, b) with
both b > 0 and b < 0.
We will show that X ⊆ U ∪ V .
Let (x, 1/x) ∈ X.
Then x > 0 or x < 0, by definition of X.
So 1/x < 0 or 1/x > 0.
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So (x, 1/x) ∈ U or (x, 1/x) ∈ V .
So (x, 1/x) ∈ U ∪ V , by definition of “union.”
So X ⊆ U ∪ V , by definition of “subset.”
Therefore X is disconnected, by definition of “disconnected.” �

Note that the fact that X is disconnected matches our intuition,
which says that the graph of X can be decomposed into two “pieces.”

LINEAR INDEPENDENCE???

6.4. Power sets, and sets as elements

A set, as you know, is a collection of elements. One thing that
causes no end of confusion to the budding math major is the fact that
the elements themselves can be sets.

CAN WE MENTION THE SETS-AS-BOXES SOFTWARE?

Example 6.92. Let V = {a, b, c, d} and E = {{a, b}, {a, c}, {b, d}, {c, d}}.
In other words, the elements of V are a, b, c, and d. The elements of E
are all sets, namely the sets {a, b}, {a, c}, {b, d}, and {c, d}. For each
of the following statements, is it true or false?

a, c ∈ V ? True, because a and c are elements of V .
{a, c} ⊆ V ? True, because every element of {a, c} is an element of

V . Specifically, a ∈ V and c ∈ V , and a and c are the only elements
we have to check, because they are the only elements of {a, c}.

a, c ⊆ V ? False, because a is not a subset of V . (To be really
nitpicky and technical, we should more precisely say, “Not necessarily
true, because we do not know whether a is a subset of V .”)

a ∈ E? False, because a is not an element of E.
{a, c} ∈ E? True, because {a, c} is an element of E.
{a, c} ⊆ E? False, because not every element of of {a, c} is an

element of E. To give a specific counterexample, a is an element of
{a, c}, but a /∈ E.
{{a, c}} ⊆ E? True, because every element of {{a, c}} is an element

of E. Specifically, {a, c} ∈ E, and {a, c} is the only element we have
to check, because it is the only element of {{a, c}}.

Too Much Information 6.93. Example 6.92 comes from graph
theory, a diverse and active area of mathematics with oodles of real-
world applications. In Figure ??, the set V is the set of vertices (dots),
and E is the set of edges (line segments).

Example 6.94. Let A = {{n, n + 1} : n ∈ Z}. For each of the
following statements, is it true or false?
{−3,−2} ∈ A? True. (Take n = −3.)
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−3 ∈ A? False.
{−3,−2} ⊆ A? False, because −3 ∈ {−3,−2}, but −3 /∈ A.
{−3,−1} ∈ A? False, because there does not exist n ∈ Z such that

{−3,−1} = {n, n + 1}. (Sketch of proof: Temporarily assume there
exists such an n. Then n = −3 or n = −1. In either case, we get a
contradiction.)
{{−3,−2}, {−2,−1}} ⊆ A? True, because every element of {{−3,−2}, {−2,−1}}

is an element of A. Specficially, {−3,−2} ∈ A and {−2,−1} ∈ A.

Check for Understanding 6.95. Let Φ = {2, {2,−2}}, and let
Ψ = {{n ∈ Z | n2 = k} : k ∈ {0, 1, 4, 9, 16}}. For each of the
following statements, is it true or false?

(1) 2 ∈ Φ?
(2) {2} ∈ Φ?
(3) {2} ⊆ Φ?
(4) −2 ∈ Φ?
(5) {−2} ∈ Φ?
(6) {−2} ⊆ Φ?
(7) 2,−2 ∈ Φ?
(8) {2,−2} ∈ Φ?
(9) 0 ∈ Ψ?

(10) {0} ∈ Ψ?
(11) {2,−2} ∈ Ψ?
(12) Φ ⊆ Ψ?
(13) Φ ⊆ Ψ ∪ N?

Example 6.96. Here’s one that really throws students for a loop.
True or false: {∅} is the empty set? The answer is false, because {∅}
contains an element. Specifically, ∅ ∈ {∅}.

Definition 6.97. Let A be a set. We define the power set of A,
denoted P(A), by

P(A) := {B | B ⊆ A}.

In other words, the power set of A is the collection of all subsets of
A.

Example 6.98. LetB = {1, 2, 3}. Then P(B) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, B}.
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Example 6.99. Can the power set of a set A ever be empty? The
answer is no, because ∅ ⊆ A for any set A. Hence ∅ ∈ P(A). Hence
P(A) 6= ∅.

Example 6.100. We have N ∈ P(Z), because N ⊆ Z. However, the
statement “N ⊆ P(Z)” is false, because there is at least one element of
N which is not an element of P(Z). For example, 1 ∈ N, but 1 /∈ P(Z),
because 1 is not a subset of the integers.

Check for Understanding 6.101. Let Ω = {∅, {∅}}. Find P(Ω).

Too Much Information 6.102. Now recall Example 6.98. Ob-
serve that B has 3 elements, and P(B) has 8 elements. After all, to
make a subset of B, we can go through the elements of B one at a time.
For each element, we have two choices: either we put it in our subset,
or we don’t. So in total, we have 2 · 2 · 2 = 8 possible subsets of B.

In general, let A be a finite set with n elements. The same line of
reasoning shows us that P(A) has 2n elements.

Example 6.103. Prove that A = B iff P(A) = P(B).

Proof. The statement “If A = B, then P(A) = P(B).” follows
by substituting B for A.
Now we will show that if P(A) = P(B), then A = B.
To do so, we will first show that A ⊆ B.
We know A ⊆ A.
So A ∈ P(A), by definition of “power set.”
So A ∈ P(B), because P(A) = P(B).
So A ⊆ B, by definition of “power set.”
The same argument, reversing the roles of A and B, shows that B ⊆ A.
Therefore A = B. �

Too Much Information 6.104. Here’s an alternate proof of the
fact that if P(A) = P(B), then A = B. Let x ∈ A. Then {x} ∈ P(A).
So {x} ∈ P(B). So x ∈ B. Therefore A ⊆ B. The same argument,
reversing the roles of A and B, shows that B ⊆ A. Therefore A = B.

6.5. Families of sets

In advanced math courses, we sometimes need to take unions, inter-
sections, or products of infinitely many sets all at once, not just finitely
many. In this section, we discuss these “infinite” set operations.
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Warning! Our experience has been that students have a hard time
with the material in this section. So go slow, and take the time to
master it.

Informal Definition 6.105. When every element of a set A is
itself a set, then we often call A a family or a collection of sets.

Too Much Information 6.106. We often use script letters for
families of sets.

Definition 6.107. Let A be a nonempty family of sets. We define
the union over A, denoted

⋂
A∈AA, by⋂

A∈A

A := {x | x ∈ A for some A ∈ A}.

We define the intersection over A, denoted
⋃
A∈AA, by⋃

A∈A

A := {x | x ∈ A for all A ∈ A}.

Figure ?? shows Venn diagrams that illustrate the union and inter-
section of a family of sets.

Too Much Information 6.108. When A is empty, the conven-
tion is that

⋂
A∈AA = ∅, because the statement “There exists A ∈ A

such that x ∈ A.” is false for all x. Also, if A, then
⋃
A∈AA is the

universe, because the statement “For all A ∈ A, x ∈ A.” is vacuously
true for all x.

Too Much Information 6.109. Note that the ordinary union
of two sets C and D is a special case of Def. 6.107. To see this, let
A = {C,D}. Then C ∪D is the set of all x such that x ∈ C or x ∈ D.
In other words, C ∪ D is the set of all x such that x ∈ A for some
A ∈ A. That is, C ∪D =

⋃
A∈AA.

Similarly, C ∩D can be expressed as an intersection over a family
of sets. We can play the same game for a union of three sets, or
an intersection of five sets, or in general, any union or intersection of
finitely many sets. More precisely,

A1 ∪ · · · ∪ An =
⋃
A∈A

A
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and

A1 ∩ · · · ∩ An =
⋂
A∈A

A.

Example 6.110. Let B = {{n ∈ Z : |n| ≤ k} |k ∈ N}. For exam-
ple, the set {−3,−2,−1, 0, 1, 2, 3} is an element of B, corresponding to
k = 3. Similarly, {−1, 0, 1} is an element of B, corresponding to k = 1.
Then ⋃

R∈B

R = Z,

because every integer is contained in some element of B. Also,⋂
R∈B

R = {−1, 0, 1},

because −1, 0, and 1 are the only integers contained in every element
of B.

In Example 6.110, notice that every set in B has a corresponding
number k. It happens frequently with families of sets that each of them
have a “label,” and it often helps to make the labels explicit. This leads
us to our next definition.

Definition 6.111. Let ∆ be a nonempty set. Suppose that for all
α ∈ ∆, there is a corresponding set Aα. The family {Aα | α ∈ ∆} is
called an indexed family of sets. The set ∆ is called the index set.
If α ∈ ∆, then α is called the index of the set Aα.

THIS NEXT REMARK—LET’S MAKE IT A “PUBLIC SERVICE
ANNOUNCEMENT” ENVIRONMENT.

Too Much Information 6.112. The plural of index is indices,
pronounced “IN-duh-SEES.” We’ve heard “IN-duh-SEE” instead of in-
dex, but neither “IN-duh-SEE” nor indice is a word. While we’re on
the subject, note the similarity to vertex (plural: vertices, pronounced
“VER-tuh-SEES”) and matrix (plural: matrices, pronounced “MAY-
truh-SEES”). Just so you know:

“MAY-truh-SEE” is not a word—that is, matrice is not a word.
“VER-tuh-SEE” is not a word—that is, vertice is not a word.
Please put a quarter in a swear jar every time you utter one of these

horrendous vulgarisms. And then when it’s full, please mail the swear
jar to us! (For the record: Just kidding.)
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Example 6.113. Let’s continue Example 6.110. For each k ∈ N,
let Rk = {n ∈ Z : |n| ≤ k}. So R3 = {−3,−2,−1, 0, 1, 2, 3}, for
example. The number 3 is the index for the set R3. (The number 3
is kind of like a “label” attached to the set R3—think of a runner in
a race with the number 3 pinned to the shirt. The point is that it’s
convenient to have the label to refer to.) Notice that B = {Rk | k ∈ N.
So B is an indexed family of sets. The index set here is N.

Definition 6.114. Let A = {Aα | α ∈ ∆} be an indexed family of
sets. We define⋃

α∈∆

Aα :=
⋃

A ∈ AA and
⋂
α∈∆

Aα :=
⋂

A ∈ AA.

Note the very slight difference in notation between Def. 6.107 and
Def. 6.114. In one, the family of sets itself goes under the union or
intersection symbol, whereas the other uses the index set instead.

Example 6.115. We have
⋃
k∈Z(k, k + 1) = R \ Z, as shown in

Figure ??.

Example 6.116. Let Ω be the set of nonnegative integers. For each
ω ∈ Ω, let

Aω = { x
2ω
| x ∈ Z}.

Find
⋂
ω∈Ω Aω and

⋃
ω∈Ω Aω.

A good first step is to think about what each of the individual sets
Aω looks like. We have that A3, for example, is the of all rational
numbers of the form x/8. Note that 3/4 ∈ A3, because 3/4 = 6/8 and
6 ∈ Z. So another way to put it is that A3 is the set of all rational num-
bers which in lowest terms are either integers or else have denominator
2, 4, or 8. In general, Aω is the set of all rational numbers which in
lowest terms are either integers or else have denominator 2, 4, . . . , 2ω.
In particular, A0 = Z.

Now,
⋂
ω∈Ω Aω is the set of all elements which are in Aω for all ω.

The only elements that belong to every single set Aω are the integers.
So
⋂
ω∈ΩAω = Z.

The set
⋃
ω∈ΩAω is the set of all elements which are in Aω for some

ω. So any rational number of the form x/2y, where x is any integer
and y is any nonnegative integer, is in

⋃
ω∈ΩAω. So⋃

ω∈Ω

Aω = { x
2y
| x ∈ Z, y ∈ Ω}.
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(You may be interested to know that the set { x
2y
| x ∈ Z, y ∈ Ω} has a

name—it’s called the set of dyadic rationals.)

Example 6.117. Let A = {Aα | α ∈ ∆} be an indexed family of
sets. Let α0 ∈ ∆. Prove that

Aα0 ⊆
⋃
α∈∆

Aα.

Proof. Let x ∈ Aα0 .
Then x ∈

⋃
α∈∆ Aα, by definition of “union.”

Therefore Aα0 ⊆
⋃
α∈∆ Aα, by definition of “subset.” �

Check for Understanding 6.118. With notation as in Example
6.117, prove that

⋂
α∈∆ Aα ⊆ Aα0 .

Theorem 6.119 (de Morgan’s laws). Let A = {Aα | α ∈ ∆} be an
indexed family of sets. Then

(1)
(⋂

α∈∆Aα
)c

=
⋃
α∈∆(Acα), and

(2)
(⋃

α∈∆Aα
)c

=
⋂
α∈∆(Acα).

Proof. (1)We have that x ∈
(⋂

α∈∆ Aα
)c

iff
x /∈

⋂
α∈∆Aα iff

it is not true that for all α ∈ ∆, x is in Aα, which holds iff
x /∈ Aα0 for some α0 ∈ ∆ iff
x ∈ Acα0

for some α0 ∈ ∆ iff
x ∈

⋃
α∈∆(Acα).

(2) The proof is similar, so we leave it as an exercise. �

ALSO PRODUCTS OF FAMILIES??? SEE WHAT THE OTHER
BOOKS DO.
Examples from number theory

Example 6.120. Recall the notation 〈n〉 = {x | x ∈ Z and n divides x}
from Example 6.59. Let S be a nonempty subset of Z, and let C =
{〈n〉 | n ∈ S}. Then C is an indexed family of sets with index set S.
(a) Prove that

⋂
n∈S〈n〉 6= ∅. (b) Prove that if a, b ∈

⋂
n∈S〈n〉, then

a− b ∈
⋂
n∈S〈n〉.

Proof. (a) We know that n|0 for all n ∈ S, by definition of “di-
vides.”
So 0 ∈ 〈n〉 for all n ∈ S, by definition of 〈n〉.
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So 0 ∈
⋂
n∈S〈n〉, by definition of “intersection.”

So
⋂
n∈S〈n〉 6= ∅.

(b) Let n ∈ S.
We will show that a− b ∈ 〈n〉.
We know that a, b ∈ 〈n〉, by definition of “intersection” and the fact
that a, b ∈

⋂
n∈S〈n〉.

So n|a and n|b, by definition of 〈n〉.
So n|a− b, by NEED A REFERENCE HERE.
So a− b ∈ 〈n〉, by definition of 〈n〉.
Because n was an arbitrary element of S, we have shown that a−b ∈ 〈n〉
for all n ∈ S.
So a− b ∈

⋂
n∈S〈n〉, by definition of “intersection.” �

If you take a class on group theory, you will learn that what we
just did in this example is a special case of a much more general result,
that an arbitrary intersection of subgroups is a subgroup.

Check for Understanding 6.121. Use notation as in Example
6.120. Let ∆ = {β ∈ N | β ≥ 2}. Find

⋂
β∈∆〈β〉 and

⋃
β∈∆〈β〉.

Examples from the real line and plane

Example 6.122. We have
⋂
k∈N(−1, 1/k) = (−1, 0], as in Figure

??.

Check for Understanding 6.123. Find
⋂
k∈N(0, 1/k).

Example 6.124. Recall Definition 6.26. Let {Uα | α ∈ ∆} be an
indexed family of sets such that for all α ∈ ∆, we have that Uα is an
open subset of R. Prove that

⋃
α∈∆ Uα is open.

Proof. Let x ∈
⋃
α∈∆ Uα.

We will show that there exists an open interval I such that x ∈ I and
I ⊆

⋃
α∈∆ Uα.

We know x ∈ Uα0 for some α0 ∈ ∆, by definition of “union”.
By definition of “open,” we know there exists open interval I such that
x ∈ I and I ⊆ Uα0 .
By Example 6.117, it follows that I ⊆

⋃
α∈∆ Uα.

Therefore
⋃
α∈∆ Uα, by definition of “open.” �

Example 6.125. Recall Definition 6.87. Let {Uα | α ∈ ∆} be an
indexed family of sets such that for all α ∈ ∆, we have that Uα is an
open subset of R2. Prove that

⋃
α∈∆ Uα is open.
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Proof. The proof is identical to the proof in Example 6.124, once
you replace the word “interval” with the word “disc.” �

Too Much Information 6.126. If you take a Topology class,
you will learn that this property—the fact that an arbitrary union of
open sets is open—is one of the defining properties of “openness.”

Too Much Information 6.127. After Examples 6.124 and 6.125,
you might wonder about intersections of open sets. It turns out that
an intersection of finitely many open sets in R or R2 is open. An
intersection of infinitely many open sets is not necessarily open, as
Example 6.123 shows. For each of the sets (−1, 1/k) is open in R, but
the intersection is (−1, 0], which is not open in R.

ANSWERS TO CHECKs FOR UNDERSTANDING

• 6.7(1) Only Θ ⊆ Υ and Φ ⊆ Υ.
• 6.7(2) Only N ⊆ Z.
• 6.7(3) No, because there are negative real numbers that are

not rational. (For example, −
√

2.)
• 6.7(4) Yes, it applies, and we conclude that x ∈ H.
• 6.7(5) No, it does not apply.
• 6.7(6) We would also need to know that ∆ ⊆ Γ.
• 6.34(1) We have {3} = A ∩B and {1, 2, 3, 4, 5} = A ∪B.

• 6.34(2) We get {−3,−2,−1, 0, 1, 2, 3, 4, 5}

• 6.34(3) We can conclude that a is either in both X and Y , or
in Z.

• 6.61 We have (a, b)c = (−∞, a] ∪ [b,∞).
• 6.51 We get Ac ∩Bc.

• 6.73 PICTURE. (−1,−3), (−1, 0), (−1, 4), (2,−3), (2, 1) are five
elements of this set.
6.77 PICTURE. A× (B ∩ C) = (A×B) ∩ (A× C).

• 6.86 B(x, r) must be a subset of B(x, s).

Proof. Let y ∈ B(x, r).
Then dist(x,y) < r, by definition of “open disc.”
So dist(x,y) < s, because r < s.
So y ∈ B(x, s), by definition of “open disc.”
Therefore B(x, r) ⊆ B(x, s), by definition of “subset.” �



6.5. FAMILIES OF SETS 110

• 6.118

Proof. Let x ∈
⋂
α∈∆ Aα.

Then x ∈ Aα0 , by definition of “intersection.”
So
⋂
α∈∆Aα ⊆ Aα0 , by definition of “subset.” �

• 6.121 We have
⋂
β∈∆〈β〉 = {0} and

⋃
β∈∆〈β〉 = Z \ {1,−1}.

6.6. Exercises

THEOREMS IN EGGEN LIKE A ⊆ A, etc.
(1) Fill in the blank to make a true statement: “Let a, b, c, d ∈ R.

Then (c, d) ⊆ [a, b] iff .” Then prove that your statement
is correct. (See Example 6.25 to get an idea of how you might
fill in the blank.)

(2) Fill in the blank in Check for Understanding 6.77 to make a
true statement, and then prove that your answer is correct.

(3) Let A be an open ray. Prove that A is an open subset of R.
(4) Prove that Q is a disconnected subset of R.
(5) Let L = {(a, b) ∈ R2 | b < 0}. (The set L is called the lower

half-plane.) Show that L is open.
In the next few exercises, recall the notation 〈n〉 = {x | x ∈

Z and n divides x} from Example 6.59, let S ⊆ Z, and let
C = {〈n〉 | n ∈ S}.

(6) Prove that if a ∈
⋂
n∈S〈n〉 and r ∈ Z, then ra ∈

⋂
n∈S〈n〉.

(7) Suppose a, b, c, d ∈ R with a ≤ c < d ≤ b. Prove that (a, b) ∩
(c, d) = (c, d).

(8) Suppose a, b, c, d ∈ R with a < b and a ≤ c ≤ b < d. Prove
that (a, b) ∩ (c, d) = (c, b).

(9) Let A = {1, 5,−12, 100, 1/3, π}, B = {5, 1,−12, 18,−1/3},
C = {10,−1, 0}, D = {1, 2}, and E = {1,−1}. Calculate the
following:
(a) A ∪B
(b) A ∩B
(c) A ∩ C
(d) A ∩ ∅
(e) B ∪ ∅
(f) D × E
(g) (D ∩ A)× (E ∪D)
(h) C ×D
(i) A−B
(j) C − A
(k) A− ∅
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(10) Let A = {2k | k ∈ Z} and B = {3n |n ∈ Z}. Prove that
A ∩B = {6m |m ∈ Z}.

(11) Let A,B, and C be sets. Prove that if A ⊆ B, then A− C ⊆
B − C.

(12) Let A and B be sets. Prove that A ⊆ B if and only if A−B =
∅.

(13) Let A,B, and C be sets. Prove that if A ⊆ B, then A ∪ C ⊆
B ∪ C.

(14) Let A,B, and C be sets. Prove that A× (B ∩C) = (A×B)∩
(A× C).

(15) Let A,B, and C be sets. Prove or disprove: If A ∩B 6= ∅ and
B ∩ C 6= ∅, then A ∩ C 6= ∅.

(16) Let n be an integer with n ≥ 2. Prove that

{x ∈ Z |x ≡ a(modn)} = {a+ qn | q ∈ Z}.
(17) Suppose that a, b and n are integers with n ≥ 2. Suppose that

a 6≡ b(modn). Let

A = {x ∈ Z |x ≡ a(modn)} and B = {x ∈ Z |x ≡ b(modn)}.
Prove that A ∩B = ∅.

(18) Suppose that a, b and n are integers with n ≥ 2. Suppose that
a ≡ b(modn). Let

A = {x ∈ Z |x ≡ a(modn)} and B = {x ∈ Z |x ≡ b(modn)}.
Prove that A = B.

(19) Let n be an integer with n ≥ 2. Let

A = {x ∈ Z |x ≡ 0(mod 3)} and B = {x ∈ Z |x ≡ 0(mod 6)}.
Prove that B ⊆ A. In general the following is true: If n|m,
then

{x ∈ Z |x ≡ 0(modm)} ⊆ {x ∈ Z |x ≡ 0(modn)}.
Can you prove it?

(20) Define the set Pn to be the set of primes between 1 and n. In
mathematical notation, we have that

Pn = {m ∈ Z | 1 < m ≤ n and m is prime.}.
For example, P4 = {2, 3} and P13 = {2, 3, 5, 7, 11, 13}. Write
out the elements of P5, P6, P16 and P21. Then describe the
elements in the sets

∞⋃
n=2

Pn and
∞⋂
n=2

Pn.
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(21) Let An = {x ∈ Z | −n ≤ x ≤ n}. List the elements in the sets
A1, A2, A3, and A4. Then calculate the following sets

⋂∞
i=2 An

and
⋃∞
i=5An.

(22) Calculate the following intersections and unions.
(a) Calculate

⋃∞
n=1An and

⋂∞
n=1An where An = (−n, n).

(b) Calculate
⋃∞
n=2An and

⋂∞
n=2An where An = (1/n, 1).

(c) Calculate
⋃∞
n=1An and

⋂∞
n=1 An where An = (2+1/n, n).

(23) Let A, B, and C be sets. Prove that A∩(B∩C) = (A∩B)∩C.
(24) Let A, B, and C be sets. Prove that A∪ (B ∩C) = (A∪B)∩

(A ∪ C).
(25) Let A = {1, x, 5}. List the elements of the power set P(A).
(26) Let A and B be sets.

(a) Prove that P(A ∩B) = P(A) ∩ P(B).
(b) Prove that P(A) ∪ P(B) ⊆ P(A ∪B).
(c) Give an example where P(A) ∪ P(B) 6= P(A ∪B).

(27) Let A and B be sets. Prove that A \B and B are disjoint.
(28) Let A, B, C, and D be sets. Prove that (A×B)∩ (C ×D) =

(A ∩ C)× (B ∩D).

OPEN DISCS ARE CONVEX—CONVEXITY IMPOR-
TANT IN OPTIMIZATION

Challenge question: Is the converse of the statement in
Exercise 6.75 true? Either prove that it is true, or else find
a counterexample. WARNING: This is a trick question. Be
careful of a trap we have set for you.

6.7. Fun math facts

History and significance of Descartes’ coming up with the plane
Pick’s theorem?
Gauss’ circle problem?
Interior, exterior, boundary, Jordan Curve Theorem



Chapter 7
Relations

7.1. Relations

Consider the set of integers Z. Given two integers a and b we can
compare (or relate) them using the less-than relation <. For example,
we can write 2 < 5. Or we can write 7 6< 2. In this section, we
give a general definition for a relation on a set. We first construct
relations using Cartesian products. However, mathematicians usually
define relations without constructing them from Cartesian products.
Hence we will quickly stop constructing them that way.

Definition 7.1. A relation ∼ on a set S is a subset of S × S. If
(x, y) is an element of ∼ then we say that x is related to y and write
x ∼ y. If (x, y) is not an element of ∼ then we write x 6∼ y.

Example 7.2. Let S = {−15, 2, 0}. Let

∼ = {(0, 0), (−15, 2), (0, 2)}.

We say that 0 ∼ 0, −15 ∼ 2, and 0 ∼ 2. However, −15 6∼ 0 because
(−15, 0) is not in ∼. Also notice that 2 6∼ −15 because (2,−15) is not
in ∼. Order matters in a relation.

Example 7.3. Here we give the more common way of defining a
relation; that is, without listing a set of ordered pairs. Consider the
set of integers Z. Consider the relation ∼ on Z where a ∼ b iff a < b.
In this case we have 3 ∼ 10 because 3 < 10. We have that 42 6∼ 7
because 42 6< 7. To conform with Definition 7.1 we can think of ∼ as

113
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the following set

∼ = {. . . , (−1, 0), (−1, 1), (−1, 2), (−1, 3), (−1, 4), . . .

= {. . . , (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), . . .

= {. . . , (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), . . .}
We put “. . .” because there are infinitely many more ordered pairs in
∼ that we didn’t give in the above list.

Check for Understanding 7.4. (1) Let S = {5, π, 3, 10}
and

∼= {(5, 3), (3, 5), (π, 10), (3, 3)}.
Is 5 ∼ 3? Is 10 ∼ π? Is 5 6∼ 5?

(2) Consider the relation ∼ on R where x ∼ y iff y − x ∈ Z.
(a) Is 5.13 ∼ 17.13? Is 5 ∼ 100? Is π ∼ 3.14?
(b) Find all x such that x ∼ 5.
(c) If x ∼ y is true, is y ∼ x necessarily true?

7.2. Equivalence Relations

Definition 7.5. Let S be a set and ∼ be a relation on S. We say
that ∼ is an equivalence relation on S if the following are true:

• (Reflexive) For every x ∈ S we have that x ∼ x.
• (Symmetric) For every x, y ∈ S, if x ∼ y, then y ∼ x.
• (Transitive) For every x, y, z ∈ S, if x ∼ y and y ∼ z, then
x ∼ z.

Example 7.6. Let S = {−15, 2, 0}. Define the relation

∼ = {(0, 0), (0, 2), (2, 0), (−15, 2)}.
Notice that ∼ is not reflexive because −15 6∼ −15 and 2 6∼ 2.

Notice that ∼ is not symmetric because −15 ∼ 2 but 2 6∼ −15. If
(2,−15) was an element of ∼ then ∼ would be symmetric.

Checking transitivity must be done by brute force. That is, one
must find all combinations where x ∼ y and y ∼ z and check to make
sure that x ∼ z. Let’s check them all:

(1) We have that 0 ∼ 0 and 0 ∼ 2. And 0 ∼ 2.
(2) We have that 0 ∼ 2 and 2 ∼ 0. And 0 ∼ 0.
(3) We have that 2 ∼ 0 and 0 ∼ 0. And 0 ∼ 2.
(4) We have that −15 ∼ 2 and 2 ∼ 0, but −15 6∼ 0.
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By (4) we see that ∼ is not transitive.

Example 7.7. Let A = {1, 2, 3}. Define the relation

∼ = {(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)}
on A.

We see that ∼ is reflexive because 1 ∼ 1, 2 ∼ 2, and 3 ∼ 3.
Scanning through ∼ we see that ∼ is symmetric because for every

x ∼ y we have that y ∼ x. As an example, notice that 1 ∼ 3. Therefore
we need 3 ∼ 1, which is true.

We now check transitivity by brute force.

(1) We have that 1 ∼ 1 and 1 ∼ 1. And 1 ∼ 1.
(2) We have that 1 ∼ 1 and 1 ∼ 3. And 1 ∼ 3.
(3) We have that 3 ∼ 3 and 3 ∼ 1. And 3 ∼ 1.
(4) We have that 1 ∼ 3 and 3 ∼ 3. And 1 ∼ 3.
(5) We have that 1 ∼ 3 and 3 ∼ 1. And 1 ∼ 1.
(6) We have that 3 ∼ 1 and 1 ∼ 1. And 3 ∼ 1.
(7) We have that 3 ∼ 1 and 1 ∼ 3. And 3 ∼ 3.

We see that every combination works; that is, whenever we have x ∼ y
and y ∼ z, we also have x ∼ z. So ∼ is transitive.

We have shown that ∼ is an equivalence relation on A.

Example 7.8. Consider the less-than relation < on the set of inte-
gers Z. Note that < is not reflexive, because for example, 3 6< 3. Also,
< is not symmetric because 1 < 2 but 2 6< 1. However, < is transitive:
Let x, y, z ∈ Z. If x < y and y < z, then x < z.

Check for Understanding 7.9. (1) Let S = {1, 2, 3} and

∼= {(1, 1), (1, 2), (2, 3), (3, 2), (2, 1)}.
(a) Is ∼ reflexive?
(b) Is ∼ symmetric?
(c) Is ∼ transitive?

(2) Let ∼ be the relation on R where x ∼ y iff y − x ∈ Z, as
in Check for understanding 7.4. Prove that ∼ is reflexive,
symmetric, and transitive.

Definition 7.10. Let ∼ be an equivalence relation on a set S. Let
x ∈ S. The equivalence class of x is defined to be

x = {y ∈ S | x ∼ y}.
That is, x consists of all the elements y from S that are related to x.
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Figure 1. A picture showing how A is broken up into
equivalence classes

Example 7.11. Let A = {1, 2, 3}. Define the relation

∼ = {(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)}
on A. We saw in Example 7.7 that ∼ is an equivalence relation on S.
Note that 1 ∼ 1 and 1 ∼ 3. Therefore,

1 = {y ∈ A | 1 ∼ y} = {1, 3}.
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Note that 2 ∼ 2. Thus

2 = {y ∈ A |2 ∼ y} = {2}.

Note that 3 ∼ 3 and 3 ∼ 1. Hence

3 = {y ∈ A | 3 ∼ y} = {1, 3}.

Therefore ∼ gives rise to two distinct equivalence classes:

1 = {1, 3} = 3

2 = {2}

See Figure 1 for a picture showing how A is broken up into equiva-
lence classes. Notice that either two equivalence classes are equal, for
example 1 = 3, or they do not intersect at all, for example 1 ∩ 2 = ∅.
Proposition 7.15 will show that this is always the case.

Definition 7.12. Let S be a set and ∼ be an equivalence relation
on S. We denote the set of equivalence classes of S as S/ ∼.

Example 7.13. Let A and ∼ be as in Example 7.11. We saw that
A/ ∼= {1, 2}.

Check for Understanding 7.14. (1) Let ∼ be the relation
on R where x ∼ y iff y−x ∈ Z, as in Check for understanding
7.4 and 7.9. Recall that ∼ is an equivalence relation.
(a) Describe the elements of the set 0.
(b) Prove that if a ∈ Z then a = 0.
(c) Let x ∈ R. Describe the elements of x. Draw a picture

of the real line and label several points in x.

Proposition 7.15. Let ∼ be an equivalence relation on a set S.
Let x, y ∈ S. Then

(1) x ∈ x.
(2) x = y if and only if x ∈ y.
(3) x = y if and only if x ∼ y.
(4) x ∩ y = ∅ if and only if x 6∼ y.

Proof. Let x, y ∈ S.



7. RELATIONS 118

(1) We have that x ∼ x since ∼ is an equivalence relation and
therefore reflexive.
Therefore x ∈ x by the definition of x.

(2). Suppose that x = y.
We know that x ∈ x by part (1) of this proposition.
Therefore x ∈ y since x = y.

Conversely suppose that x ∈ y.
Therefore y ∼ x by the definition of y.
Let z ∈ x. Then x ∼ z by the definition of x.
Since y ∼ x and x ∼ z we have that y ∼ z by the transitivity of ∼.
Hence x ⊆ y.
Let w ∈ y. Then y ∼ w by the definition of y.
Note that x ∼ y because y ∼ x and ∼ is symmetric.
Since x ∼ y and y ∼ w we have that x ∼ w by the transitivity of ∼.
Thus x ∈ w by the definition of w.
Hence y ⊆ x.
Therefore x = y.

(3) Suppose that x = y.
Hence x ∈ y by part (2) of this proposition.
Thus y ∼ x by the definition of y.
Therefore x ∼ y since ∼ is symmetric.

Conversely suppose that x ∼ y.
Thus y ∼ x since ∼ is symmetric.
Hence x ∈ y by the definition of y.
Hence x = y by part (2) of this proposition.

(4). Suppose that x ∩ y = ∅.
Note that x 6= ∅ by part (1) of this proposition.
We have that x 6= y since x ∩ y = ∅.
Thus x 6∼ y by part (3) of this proposition.
〈For the converse direction of part (4) we need to prove that if x 6∼ y,

then x ∩ y = ∅. Instead we prove the contrapositive which says that if
x ∩ y 6= ∅ then x ∼ y.〉
Assume that x ∩ y 6= ∅.
Then there exists some z ∈ S with z ∈ x ∩ y.
Hence x ∼ z and y ∼ z since z ∈ x and z ∈ y.
Thus z ∼ y since ∼ is symmetric.
Therefore x ∼ y because x ∼ z and z ∼ y and ∼ is transitive. �

7.3. Integers modulo n

Recall the definition of congruence (Definition ??????).
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Example 7.16. Let n be an integer with n ≥ 2. Then congruence
modulo n is an equivalence relation.

Proof. We begin by showing that congruence modulo n is reflex-
ive.
Let x ∈ Z.
Notice that x− x = 0 = n · 0.
Therefore x ≡ x(mod n) because n divides x− x.
Hence congruence modulo n is reflexive because x ≡ x(mod n) for ev-
ery x ∈ Z.

We now show that congruence modulo n is symmetric.
Let x, y ∈ Z. Suppose that x ≡ y(mod n).
Then x− y = nk for some integer k.
Thus y − x = n(−k).
Therefore y ≡ x(mod n) because n divides y − x.
Hence congruence modulo n is symmetric because x ≡ y(mod n) im-
plies that y ≡ x(mod n) for every x, y ∈ Z.

We finish by showing that congruence modulo n is transitive.
Let x, y, z ∈ Z. Suppose that x ≡ y(mod n) and y ≡ z(mod n).
Then nk = x− y and nm = y − z for some integers k and m.
Therefore x− z = x− y + y − z = nk + nm = n(k +m).
Hence x ≡ z(mod n) because n divides x− z.
Thus congruence modulo n is transitive because x ≡ y(mod n) and
y ≡ x(mod n) implies that x ≡ z(mod n) for every x, y, z ∈ Z. �

Example 7.17. Let n = 3. In this example we compute the equiv-
alence classes for congruence modulo 3 on the integers. See Figure 2 for
a picture illustrating the following computations. Consider the integer
0. Then

0 = {x ∈ Z | x ≡ 0(mod 3)}.
That is, x ∈ 0 iff 3 divides x. Therefore,

0 = {. . . ,−12,−9,−6,−3, 0, 3, 6, 9, 12, . . .}.

By Proposition 7.15 part (2) we see that

· · · = −12 = −9 = −6 = −3 = 0 = 3 = 6 = 9 = 12 = · · ·

Therefore, there is no need to calculate the equivalence classes of the
above integers because they are all equal. Another way to see that
6 = 0 is to note that 6 ≡ 0(mod 3) and use Proposition 7.15 part (3).
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Figure 2. A picture showing how Z is broken up into
equivalence classes modulo 3

Looking above we see that there are many integers whose equiva-
lence class we have not yet computed; for example, we have not com-
puted 1. We see that

1 = {x ∈ Z | x ≡ 1(mod 3)}.

That is, x ∈ 1 iff 3 divides x− 1. Or equivalently, x ∈ 1 iff x = 1 + 3k
for some integer k. To list out elements of 1 one starts at 1 and adds
or subtracts multiples of 3 (as k can be positive or negative). That is,

1 = {. . . ,−11,−8,−5,−2, 1, 4, 7, 10, 13, . . .}.
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Again, by Proposition 7.15 part (2) we see that

· · · = −11 = −8 = −5 = −2 = 1 = 4 = 7 = 10 = 13 = · · ·
Again, we could have used Proposition 7.15 part (3) to show that 10 = 1
because 10 ≡ 1(mod 3).

We have still not computed all the equivalence classes modulo 3.
For example, we have not computed 2. We see that

2 = {x ∈ Z | x ≡ 2(mod 3)}.
That is, x ∈ 2 iff 3 divides x− 2. Or equivalently, x ∈ 2 iff x = 2 + 3k
for some integer k. As above, to list out elements of 2 one starts at 2
and adds or subtracts multiples of 3. That is,

2 = {. . . ,−10,−7,−4,−1, 2, 5, 8, 11, 14, . . .}.
Again, by Proposition 7.15 part (2) we see that

· · · = −10 = −7 = −4 = −1 = 2 = 5 = 8 = 11 = 14 = · · ·
We claim that we have computed all of the distinct equivalence classes
modulo 3. They are 0, 1, and 2. Any other equivalence class is equal
to one of these. We make this precise in Proposition 7.21.

Before we leave this example we want to impress upon the reader
the importance of Proposition 7.15 part (3). For example, is 136 = 1?
Yes, because 136 ≡ 1(mod 3 since 136 − 1 = 135 = 3 · 45 is divisible
by 3. However, −15 6= 13. This is because −15 6≡ 13(mod 3 since
−15− 13 = −28 is not divisible by 3.

Check for Understanding 7.18. (1) Let n = 6. In this
problem we consider the relation on Z given by x ∼ y iff
x ≡ y(mod 6).
(a) List 10 elements in 2.
(b) List 10 elements in 5.
(c) Is 0 = 6?
(d) Is 1 = −2?
(e) Is 2 = 3?
(f) Is −10 = 5?
(g) Is 3 = 21?

Definition 7.19. Let n be an integer with n ≥ 2. We define Zn
to be the set of equivalence classes modulo n.

Example 7.20. In Example 7.17 we showed that Z3 = {0, 1, 2}.



7.4. WELL-DEFINED OPERATIONS 122

Proposition 7.21. Let n be an integer with n ≥ 2. Then

Zn = {0, 1, . . . , n− 1}.
Furthermore, the above elements of Zn are distinct. That is, if 0 ≤ x ≤
y ≤ n− 1 and x = y, then x = y.

Proof. Let S = {0, 1, . . . , n− 1}.
〈The proof strategy is as follows. Given an integer x we begin by show-
ing that x lies in the set S. This shows that every equivalence class
lives in S. We then show that each element of S is distinct.〉
Let x ∈ Z.
By the division algorithm (Theorem 4.57) there exist integers q and r
with x = nq + r and 0 ≤ r < n.
Hence n divides x− r and so x ≡ r(mod n).
Therefore x = r by the definition of equivalence class.
Hence x ∈ S because 0 ≤ r < n.
〈We now show that the elements of S are distinct.〉
Suppose that 0 ≤ x ≤ y ≤ n− 1 and x = y.
Therefore, 0 ≤ y − x < n.
Notice that y ≡ x(mod n) since x = y.
This implies that nk = y − x for some positive integer k.
We must have that k = 0 because 0 ≤ y − x < n.
Therefore x = y.
Hence the elements of {0, 1, . . . , n− 1} are distinct. �

7.4. Well-defined operations

Recall that the set of rational numbers Q consists of all fractions
of the form a/b where a and b are integers and b 6= 0. Suppose that we
define the following operation on the rational numbers

a

b
⊕ c

d
=
a+ c

b+ d
.

Here we have used the symbol ⊕ for our new operation so as not to
confuse it with the usual + operation on fractions. As an example
computation we have that 1/2⊕5/3 = (1+5)/(2+3) = 6/5. Fantastic!
We have a new operation on the rational numbers that we can study.
No, it isn’t fantastic. The operation ⊕ is nonsense. Why? Notice
the following: The fraction 1/2 equals the fraction 2/4. The fraction
5/3 equals the fraction 15/9. If the operation ⊕ makes sense then we
should have that 1/2 ⊕ 5/3 = 2/4 ⊕ 15/9. However, 2/4 ⊕ 15/9 =
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(2 + 15)/(4 + 9) = 17/13. And we saw above that 1/2 ⊕ 5/3 = 6/5.
And 17/13 6= 6/5. In mathematics, we say that ⊕ is not well-defined.
Let us now show that the usual operation of addition of fractions is
well-defined.

How To 7.22. Show that an operation is well-defined.

Let S be a set. Suppose you want to define an operation ⊕ on S. To
show that ⊕ is well-defined one must check the following.

Step 1. For every x, y ∈ S, we have that x ⊕ y ∈ S. This is called
“showing that S is closed under ⊕.”

Step 2. If some or all of the elements of S can be expressed in more
than one way, then one must also show the following: For
every a, b, c, d ∈ S, if a = b and c = d, then a⊕ c = b⊕ d.

Example 7.23. Consider the set of rational numbers Q. Define the
addition operation + on Q as follows:

a

b
+
c

d
=
ad+ bc

bd
.

Then + is well-defined on Q.

Proof. 〈We follow the steps given in How To 7.22. We begin with
step one.〉
Suppose that a/b and c/d are rational numbers where a, b, c, d are in-
tegers with b 6= 0 and d 6= 0.
By the properties of the integers, ad+ bc and bd are integers.
Furthermore, bd 6= 0 since b 6= 0 and d 6= 0.
Hence a/b+ c/d = (ad+ bc)/bd is a rational number.
〈We now complete step two of How To 7.22.〉
Suppose that a, b, s, t, c, d, x, y are integers with b, t, d, y not zero and
a/b = s/t and c/d = x/y.
We have that a/b + c/d = (ad + cb)/bd and s/t + x/y = (sy + xt)/ty
by definition of +.
Since a/b = s/t we have that at = sb.
Since c/d = x/y we have that cy = xd.
Note that

(ad+ cb)(ty)− (sy + xt)(bd) = adty + cbty − sybd− xtbd
= sbdy + xdbt− sybd− xtbd
= 0
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because at = sb and cy = xd.
Therefore, (ad+ cb)(ty) = (sy + xt)(bd).
Hence a/b+ c/d = s/t+ x/y. �

We now define an addition and multiplication operation on Zn.
This is done in Definition 7.24. We then compute some examples using
Z5 in Example 7.25. In Proposition 7.27 we prove that the operations
defined in Definition 7.24 are well-defined.

Definition 7.24. Let n be an integer with n ≥ 2. Given a, b ∈ Zn
define

a+ b = a+ b

a · b = ab.

Example 7.25. Let n = 5. Then Z5 = {0, 1, 2, 3, 4}. Suppose
that we define addition and multiplication as in Definition 7.24. For
example, we would have that

1 + 3 = 1 + 3 = 4,

4 + 3 = 4 + 3 = 7 = 2,

4 · 3 = 12 = 2,

and

2 · 4 = 8 = 3.

Are these two operations well-defined on Z5? According to How To
7.22 we must do two steps. We will not do this thouroughly right now,
instead we compute a few examples to illustrate what would need to
be done. The “real proof” comes in Proposition 7.27.

The first step of How To 7.22 is to check that Z5 is closed under the
addition and multiplication defined in Definition 7.24. For example,
2 + 5 = 7 = 2 ∈ Z5. That is, when we take two elements from Z5,
in this case 2 and 5, and we add them together we should get another
element in Z5. In this case we do, it is the element 2. This always
happens, as we will see in Proposition 7.27. The same idea must be
verified for multiplication: That is, if x, y ∈ Z5, then x · y is in Z5.

The second step of How To 7.22 is different. Each element of Z5 can
be expressed in an infinite number of ways. For example, the element
3 can also be expressed as 8 because 3 = 8. The element 1 can also
be expressed as 11 since 1 = 11. In order to check step two of How
To 7.22 we must make sure for example that 3 + 1 = 8 + 11. We must
make sure that this is true because we know that 3 = 8 and 1 = 11.
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Let’s check it. Note that 3 + 1 = 4 and 8 + 11 = 19 = 4. In this case
they are equal. The same idea must be checked for multiplication. We
do all of this in general in Proposition 7.27.

Check for Understanding 7.26. In Z5 = {0, 1, 2, 3, 4} calculate
the following. As in Example 7.25, reduce your answer x so that
0 ≤ x ≤ 4.

(1) 4 + 4
(2) 4 · 4
(3) 2 +−10
(4) −3 + 2
(5) 3 · 3
(6) Show that 0 = 10 and 2 = −3. Check that 0 + 2 = 10 +−3

and 0 · 2 = 10 · −3.

Proposition 7.27. Let n be an integer with n ≥ 2. Let a, b ∈ Zn.
The operations

a+ b = a+ b

a · b = ab.

are well-defined on Zn.

Proof. 〈We begin with step one of How To 7.22.〉
Let x, y ∈ Zn where x, y ∈ Z.
By the properties of the integers, both x+ y and xy are integers.
Hence x+ y = x+ y is in Zn.
And x · y = xy is in Zn.

〈We now verify the second step of How To 7.22.〉
Let a, b, c, d ∈ Zn with a = c and b = d.
We must show that

a+ b = c+ d(2)

a · b = c · d.(3)

〈Before verifying equations (2) and (3) we begin with some general
remarks.〉
Since a = c and b = d we have that a ≡ c(mod n) and b ≡ d(mod n).
Therefore n|(a−c) and n|(b−d) by the definition of “congruence mod-
ulo n.”
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Hence a− c = nk and b− d = nm for some integers k and m.

We now give a proof of equation (2). Note that

(a+ b)− (c+ d) = (a− c) + (b− d) = nk + nm = n(k +m).

Since k+m is an integer the above equation shows that n|(a+b)−(c+d).
Therefore (a+b) ≡ (c+d)(mod n) by definition of “congruence modulo
n.”
Thus a+ b = c+ d.
Thus a+ b = c+ d by Definition 7.24.

We now give a proof of equation (3). Note that

ab−cd = ab−bc+bc−cd = b(a−c)+c(b−d) = bnk+cnm = n(bk+cm).

Since bk+ cm is an integer the above equation shows that n|(ab− cd).
Therefore ab ≡ cd(mod n) by definition of “congruence modulo n.”
Thus ab = cd.
Thus a · b = c · d by Definition 7.24.

�

Check for Understanding 7.28. In Z4 = {0, 1, 2, 3} calculate
the following. As in Example 7.25, reduce your answer x so that
0 ≤ x ≤ 3.

(1) 3 +−10
(2) (2 · 2) · 2
(3) (3 +−100) + 54
(4) (3 · 2) · 3 + 293.

7.5. Partitions

Put stuff here.
7.6. Partial Orders

Put stuff here.
7.7. Exercises

7.7.1. Exercises for section 7.1.

(1) Put some exercises in here.

7.7.2. Exercises for section 7.2.
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(1) A set S and a relation∼ on S is given. For each example, check
if ∼ is (i) reflexive, (ii) symmetric, and/or (iii) transitive. If
∼ satisfies the property that you are checking, then prove it.
If ∼ does not satisfy the property that you are checking, then
give an example to show it.
(a) S = R where a ∼ b if and only if a ≤ b.
(b) S = R where a ∼ b if and only if |a| = |b|.
(c) S = Z where a ∼ b if and only if a|b.
(d) S is the set of subsets of N where A ∼ B if and only if

A ⊆ B. Some examples of elements of S are {1, 10, 199},
{2, 7, 10}, and {2, 10, 3, 7}. Note that {2, 7, 10} ∼ {2, 10, 3, 7}

(2) Consider the set S = R×R. Define the relation ∼ on S where
(a, b) ∼ (c, d) if and only if a2 + b2 = c2 + d2.
(a) Find a pairs of points (a, b) and (c, d) that are related in

S. Repeat this exercise five more times. Each time you
do this, draw a picture.

(b) Prove that ∼ is an equivalence relation on S.
(c) Draw a picture of the equivalence class of (1, 0). Repeat

this exercise for (0, 0), (1, 1), (0, 2), and (1, 0).
(d) Describe the elements of S/ ∼. Draw a picture of several

equivalence classes.
(3) Consider the set S = R where x ∼ y if and only if x2 = y2.

(a) Find all the numbers that are related to x = 1. Repeat
this exercise for x =

√
2 and x = 0.

(b) Prove that ∼ is an equivalence relation on S.
(c) Draw a number line. Draw a picture of the equivalence

class of 1. Repeat this for x = 0, x =
√

6, x = −3.
(d) Describe the elements of S/ ∼. Draw a picture of several

equivalence classes.
(4) Consider the set S = Z where x ∼ y if and only if 2|(x+ y).

(a) List six numbers that are related to x = 2.
(b) Prove that ∼ is an equivalence relation on S.
(c) Draw a picture of the set of integers. Next, circle the

numbers that are in the equivalence class of −3.
(d) Describe the elements of S/ ∼. Draw a picture of several

equivalence classes.

7.7.3. Exercises for section 7.3.

(1) Let n = 4. Consider the equivalence relation given by con-
gruence modulo 4. Compute ten elements from each of the
following equivalence classes: 0, −3, 2, 5.
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(2) Answer the following questions where the elements are from
Z4.
(a) Is 0 = 8?
(b) Is −10 = −2?
(c) Is 1 = 13?
(d) Is 2 = 52?
(e) Is −5 = 19?

(3) Answer the following questions where the elements are from
Z8.
(a) Is 0 = 12?
(b) Is −2 = 14?
(c) Is −51 = −109?
(d) Is 3 = 43?

7.7.4. Exercises for section 7.4.

(1) Consider Z7 = {0, 1, 2, 3, 4, 5, 6}. Calculate the following. For
each answer x that you calculate, reduce it so that 0 ≤ x ≤ 6.
(a) 2 + 6
(b) 3 + 4
(c) 3 · 5
(d) 2 · 3 + 4 · 6
(e) 5 · 2 + 1 + 2 · 4 · 6

(2) Consider Z4 = {0, 1, 2, 3}. Calculate the following. For each
answer x that you calculate, reduce it so that 0 ≤ x ≤ 3.
(a) 2 + 3
(b) 1 + 3
(c) 3 · 2
(d) 2 · 2 + 3 · 3
(e) 3 · 2 + 1 + 2 + 2 · 2 · 2

(3) Let n be an integer with n ≥ 2. Let a, b, c ∈ Zn. Prove the
following. (You will need to use the corresponding properties
of the integers given in ???????????????????.)
(a) a · b = b · a.
(b) a+ b = b+ a.
(c) a · (b+ c) = a · b+ a · c.
(d) a · (b · c) = (a · b) · c.
(e) a+ (b+ c) = (a+ b) + c.

(4) Show that the operation a ⊕ b = a2 + b
2

is a well-defined
operation for Zn. Here a2 means a · a. For example, in Z4 we
have that

2⊕ 3 = 2 · 2 + 3 · 3 = 4 + 9 = 1.
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(5) Given two integers a and b, let min(a, b) denote the minimum
(smaller) of a and b. Let n be an integer with n ≥ 2. Is the

operation a⊕ b = min(a, b) a well-defined operation on Zn?

(6) Show that the operation
a

b
⊕ c

d
=

ad

bc
is not a well-defined

operation on Q. Is the operation well-defined on Q \ {0}?
(7) Is the operation a⊕ b = ab a well-defined operation on Zn?
(8) Let S = N×N. Define the relation ∼ on S where (a, b) ∼ (c, d)

if and only if a+ d = b+ c.
(a) Is (3, 6) ∼ (7, 10) ?
(b) Is (1, 1) ∼ (3, 5) ?
(c) Prove that ∼ is an equivalence relation.
(d) List five elements from each of the following equivalence

classes: (1, 1), (1, 2), (5, 12).

(e) Define the operation (a, b)⊕ (c, d) = (a+ c, b+ d). Prove
that ⊕ is well-defined.

(9) Let S = Z × (Z \ {0}). Define the relation ∼ on S where
(a, b) ∼ (c, d) if and only if ad = bc.
(a) Is (1, 5) ∼ (−3,−15) ?
(b) Is (−1, 1) ∼ (2, 3) ?
(c) Prove that ∼ is an equivalence relation.
(d) List five elements from each of the following equivalence

classes: (1, 1), (0, 2), (2, 3).

(e) Define the operation (a, b)⊕ (c, d) = (ad+ bc, bd). Prove
that ⊕ is well-defined.

(f) Define the operation (a, b)� (c, d) = (ac, bd). Prove that
� is well-defined.

7.7.5. Exercises for section 7.5. Put exercises here.

7.7.6. Exercises for section 7.6. Put exercises here.



Chapter 8
Functions

8.1. Functions

Consider the function f given by the formula f(x) = x2. Here
we are assuming that x can be any real number. This function is a
common example from algebra and calculus. What is the function f?
Is there a way to build f using sets? One way to think about f is to
draw a picture that represents f . See Figure 1.

Hx,yL

H-1,1L

H1.25,1.5625L

-3 -2 -1 1 2 3

-2

2

4

6

8

Figure 1. A picture of the graph of y = x2 with several
points labeled.

Is there a way to think of f as a set instead of as a picture? Yes.
The graph of f given in Figure 1 gives us the answer. First of all, the

130
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graph of f lives inside of the set

R× R = {(x, y) | x, y ∈ R}.
We can think of f as the set of all the points (x, y) from R × R that
satisfy the equation y = x2. That is, we can think of the function f as
the set

f = {(x, x2) | x ∈ R}.
Some examples of points in f are (−1, 1) since (−1, 1) = (−1, (−1)2),
and (1.25, 1.5625) since (1.25, 1.5625) = (1.25, (1.25)2). Note that y =
x2 if and only if (x, y) ∈ f .

We now give a technical definition for a general function. In ev-
eryday work, mathematicians do not usually think of as function as a
set. However, it is important to see how to build a function out of sets
since it shows us that functions can be constructed out of previously
known objects in mathematics.

Definition 8.1. Let A and B be sets. Let f be a subset of A×B.
We say that f is a function from A to B if

(1) For every a ∈ A, there exists a b ∈ B where (a, b) ∈ f .
(2) If (a, b1) and (a, b2) are in f , then b1 = b2.

If this is the case, then we write f : A→ B to mean that f is a function
from A to B.

• The set A is called the domain of f .
• The set B is called the codomain of f .
• The set

{b ∈ B | there exists a ∈ A with f(a) = b}
is called the range of f .

If (a, b) ∈ f then we write b = f(a). If (a, b) 6∈ f then we write
b 6= f(a).

Too Much Information 8.2. See Figure 2. In Definition 8.1,
think of A as the set of inputs to f and the set B as the set of possible
outputs from f . That is, you plug a ∈ A into f and out pops f(a) = b
which is in B. A tuple (a, b) ∈ f means that f(a) = b.

As we move along we will phase out the notation (a, b) ∈ f given
in Definition 8.1 with the more familiar notation b = f(a).

Too Much Information 8.3. There are two conditions given for
a function in Definition 8.1. Condition (1) says that for every element
a ∈ A there is an element b ∈ B with f(a) = b. That is, condition (1)
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Figure 2. A diagram representing a function f : A→ B

ensures that one can plug any a from A into the function f . Pictorially,
this says that in a picture for f there is always at least one arrow
starting at each and every a ∈ A.

Condition (2) says that one cannot have f(a) = b1 and f(a) = b2

if b1 6= b2. That is, a function has only one output for each input.
Pictorially, this says that in a picture for f there can be only one
arrow starting from each a ∈ A.

See Example 8.6 for an example where these two conditions fail.
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Too Much Information 8.4. Pictorially, in a picture of a func-
tion f from A to B, the range of f consists of all the b ∈ B with arrows
pointing to them.

Example 8.5. LetA = {−1, 100, 3, 7.2} andB = {π,−12,−1, 1/2, 17, 14}.
Define the function

f = {(−1,−1), (100, π), (3, 17), (7.2,−1)}.

In this example, A is the domain of f and B is the codomain. We see
that f(−1) = −1 since (−1,−1) ∈ f , f(100) = π since (π, 100) ∈ f ,
f(3) = 17 since (3, 17) ∈ f , and f(7.2) = −1 since (7.2,−1) ∈ f . One
can draw a picture of f as in Figure 3. Note that conditions (1) and
(2) from Definition 8.1 are satisfied. (See Remark 8.3.)

What is the range of f? As an example, π is in the range of f
because the number 100 is in A and f(100) = π. Also, f(−1) = −1
and f(3) = 17. Therefore, we see that the range of f is C = {π,−1, 17}.
The range of f is circled in Figure 3 and labeled as C.

Example 8.6. Suppose we change Example 8.5 slightly. Let A =
{−1, 100, 3, 7.2} and B = {π,−12,−1, 1/2, 17, 14}. Define the relation

g = {(100, π), (3, 17), (7.2,−1), (100,−12)}.

Is g a function? No. The relation g does not satisfy either condition
from Definition 8.1. See Figure 4. Condition (1) is not satisfied because
−1 is in A, but (−1, b) does not appear in the definition of g. Because
of this g(−1) does not make sense. In pictorial terms, there is no arrow
coming out of −1 in the picture of g. Condition (2) is not satisfied
because (100, π) ∈ g and (100,−12) ∈ g. If g were a function then
g(100) = π and g(100) = −12 which is nonsense. In pictorial terms,
the figure for g has two arrows coming out of 100. Where does 100 go
when one plugs it into g? To π or −12? A function has exactly one
output for every input.

Notation 8.7. From now on we will usually introduce functions
as follows: “Let f : A → B be defined by the formula f(a) = some
formula.” Or we will define the function f using a picture. In either
case, you can think of f as being construced as a subset of A × B.
However, we will generally never use this fact or think of f this way.
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Figure 3. A picture of the function f from Example 8.5

Check for Understanding 8.8. Let A = {10,−5, 4, 3} and B =
{−110, π, 1.4, 100, 14, 13,−1}.

(1) Suppose that h : A→ B is a function. Let a ∈ A. What set
does h(a) live in?

(2) Define f = {(10, 1.4), (4, π), (−5, 1.4)}. Is f a function from
A to B? If so, draw a picture of f and state the range of f?
If f is not a function, explain why not.

(3) Define g = {(3, 14), (10,−110), (4, 100), (−5, 14)}. Is g a
function from A to B? If so, draw a picture of g and state
the range of g? If g is not a function, explain why not.
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Figure 4.
A picture of g from Example 8.6. g is not a function.

Definition 8.9. Let A be a set. Define the function iA : A → A
by the formula iA(a) = a for every a ∈ A. The function iA is called the
identity function on A.
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Figure 5. The identity function on the set A = {5, π, 1/2,−1}.

Example 8.10. Let A = {5, π, 1/2,−1}. The identity function on
A is given in Figure 5.

Example 8.11. Let n be an integer with n ≥ 2. Consider the
function πn : Z→ Zn given by the formula

πn(x) = x.

That is, πn sends x to the equivalence class of x modulo n. The map
πn is called the reduction modulo n map.

For example, consider n = 3. Then π3 : Z→ Z3 is a function from
Z to Z3. See Figure 6 for a partial picture of π3. (We cannot draw the
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Figure 6. A picture of the function π3 from Example 8.11

entire picture for π3 because Z is infinite.) Then,
π3(0) = 0,
π3(1) = 1,
π3(2) = 2,
π3(3) = 3 = 0 because 3 ≡ 0(mod 3),
π3(4) = 4 = 1 because 4 ≡ 1(mod 3),
π3(−1) = −1 = 2 because −1 ≡ 2(mod 3),
π3(−2) = −2 = 1 because −2 ≡ 1(mod 3),
π3(−3) = −3 = 0 because −3 ≡ 0(mod 3),
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and π3(−4) = −4 = 2 because −4 ≡ 2(mod 3).

Note that the range of π3 is all of Z3.

Check for Understanding 8.12. Consider the map π3 from Ex-
ample 8.11. Calculate π3(107) and π3(−19).

8.2. Well-defined functions

How To 8.13. Show that a function is well-defined.

Suppose that one is defining a function f : A → B. To show that f
is well-defined one must check the following.

Step 1. If a ∈ A, then f(a) ∈ B.
Step 2. For every a1, a2 ∈ A, if a1 = a2 then f(a1) = f(a2). This

step is particularly important when the elements of A can be
expressed in more than one way.

Example 8.14. Suppose that we want to define the function f :
Q → Q given by the formula f(a/b) = b/a. Is f well-defined? No,
because 0 = 0/1 is in Q but f(0/1) = 1/0 is undefined. Hence f is not
well-defined because it fails step one of How To 8.13.

Example 8.15. Suppose that we want to define the function f :
Q → Q given by the formula f(a/b) = a. For example, f(2/5) = 2.
Is f well-defined? Certainly given a/b ∈ Q we have that f(a/b) = a
is an element of Q. It seems like everything is fine. However, notice
that each rational number can be written in an infinite number of ways
and no matter which way we represent a fraction we must get the same
output from f . This does not occur. For example, 2/5 = 4/10, however
f(2/5) = 2 and f(4/10) = 4, but 2 6= 4. This doesn’t make any sense.
Hence f is not a well-defined function.

Check for Understanding 8.16. (1) Is the function f :
Q→ Q given by f(a/b) = a− b well-defined?

(2) Is the function f : Q → Q given by f(a/b) = a2/b2 well-
defined?

Example 8.17. Consider the function f3 : Z4 → Z4 given by the
formula

f3(x) = 3 · x.
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Figure 7. A picture of f3 : Z4 → Z4 from Example 8.17
. Recall that f3(x) = 3 · x.

In Example 8.18 we will show that f3 is a well-defined function. This
example is to give the reader a feel for the function. Let us compute
the values of f3. We have that

f3(0) = 3 · 0 = 0,

f3(1) = 3 · 1 = 3,

f3(2) = 3 · 2 = 6 = 2, and

f3(3) = 3 · 3 = 9 = 1.

See Figure 7 for a picture of f3.
Note that in Z4 we have that 1 = 9 since 1 ≡ 9(mod 4). If f3 is

a well-defined function we must have that f3(1) = f3(9). Let us check
this fact. From above we have that f3(1) = 3. This in fact equals

f3(9) = 3 · 9 = 27 = 3
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since 27 ≡ 3(mod 4). To show that f3 is actually well-defined one has
to give a more general argument. We do this in Example 8.18.

Example 8.18. We now generalize Example 8.17. Let n be an
integer with n ≥ 2. Let a be an integer. Define fa : Zn → Zn where

fa(x) = a · x.
Then fa is a well-defined function.

Proof. Note that if x ∈ Zn, then fa(x) = a · x = ax is an element
of Zn.
Hence step one of How To 8.13 is satisfied.

Suppose that x1 = x2.
Then fa(x1) = a · x1 = a · x2 = fa(x2) by Proposition 7.27.
Hence step two of How To 8.13 is satisfied.

Therefore fa is a well-defined function. �

Check for Understanding 8.19. Let n ≥ 2 be an integer. Con-
sider the function f : Zn → Zn given by f(x) = x2. Prove that f is a
well-defined function.

8.3. One-to-one and Onto functions

We are about to give two very useful definitions involving functions.
These are the “onto” and “one-to-one” properties that functions may
or may not satisfy. These definitions are used throughout your future
mathematics courses and are important to understand. We will give
lots of examples in this section to illustrate the topic.

We begin with “one-to-one” functions. What is a one-to-one func-
tion? It is easier to define what a one-to-one function is not. A function
f : A→ B is NOT one-to-one if Figure 8 occurs with a1 6= a2. That is,
f is not one-to-one if there are two different elements of A that f maps
to the same element of B. This is re-formulated in Definition 8.20.

Definition 8.20. Let A and B be sets and f : A → B. We say
that f is one-to-one, or injective, if for every a1, a2 ∈ A the following
statement is true: If a1 6= a2, then f(a1) 6= f(a2).

Example 8.21. See Figure 9. The function h in Figure 9 is not
one-to-one because 11 6= −1 but h(11) = h(−1). Another way of say-
ing this is that there are two distinct elements from G, the numbers 11
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Figure 8. A diagram that illustrates how a function
can FAIL to be a one-to-one function. Here we are as-
suming that a1 6= a2.

and −1, that both go to 1.5 when they are plugged into the function
h.

The function k in Figure 9 is not one-to-one because −13 6= −1
but k(−13) = h(−1). The function f in Figure 9 is one-to-one. The
function g in Figure 9 is one-to-one.
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f is one-to-one; f is onto g is not onto; g is one-to-one.

h is onto; h is not one-to-one k is not onto; k is not one-to-one.

Figure 9. Examples that illustrate Definitions 8.29 and 8.20.
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Too Much Information 8.22. The contrapositive of “If a1 6= a2,
then f(a1) 6= f(a2)” is “If f(a1) = f(a2), then a1 = a2.” We use this
fact in How To 8.23.

How To 8.23. Show that a function f : A→ B is one-to-one
Recall Remark 8.22. One technique to show that f is one-to-one
is to use the following steps:

• Assume that a1, a2 ∈ A and f(a1) = f(a2).
• Derive the fact that a1 = a2.

Figure 10. f : Z→ Z given by f(x) = 2x.
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Example 8.24. Consider the function f : Z→ Z where f is given
by the formula f(x) = 2x. A picture for f is given in Figure 10. We
now show that f is one-to-one.

Proof. Suppose that a1 and a2 are elements of Z with f(a1) =
f(a2).
This implies that 2a1 = 2a2.
Dividing by 2 we see that a1 = a2.
Hence f is one-to-one. �

How To 8.25. Show that a function f : A→ B is NOT one-to-one
Find two elements a1 and a2 from A where a1 6= a2 and f(a1) = f(a2).

Let’s give an example a function that is not one-to-one and prove
it.

Example 8.26. Consider the function f : Z7 → Z7 where f(x) =
x2. It is shown in Check for understanding 8.19 that f is a well-defined
function. Note the following:

f(0) = 0 · 0 = 0
f(1) = 1 · 1 = 1
f(2) = 2 · 2 = 4
f(3) = 3 · 3 = 9 = 2
f(4) = 4 · 4 = 16 = 2
f(5) = 5 · 5 = 25 = 4
f(6) = 6 · 6 = 36 = 1

See Figure 11 for a picture of f . Notice that f is not one-to-one since
f(1) = f(6) but 1 6= 6. (We used the pair of numbers 1 and 6 to show
that f is not one-to-one. We could have used the pair of numbers 3
and 4, or the pair of numbers 2 and 5.)

Example 8.27. We now generalize Example 8.26. Let n be an
integer where n ≥ 2. Let f : Zn → Zn where f(x) = x2. Then f is not
one-to-one.

Proof. Note that 1 6= n− 1 in Zn by Proposition 7.21.
We have that f(1) = 1.
Notice that n− 1 = −1 since n− 1 ≡ −1(mod n).
Thus f(n− 1) = n− 1 · n− 1 = −1 · −1 = 1.
Hence f(n− 1) = f(1) but n− 1 6= 1.
Therefore f is not one-to-one. �
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Figure 11. A picture of f : Z7 → Z7 where f(x) = x2.
C is the range of f .

Check for Understanding 8.28. (1) Let n = 6. Consider
fa : Z6 → Z6 where fa(x) = a · x as in Example 8.18. Draw
a picture of f2 and f5. Is f2 one-to-one? Is f5 one-to-one?

(2) Consider the function g : R → R given by g(x) = 2x− 5. Is
g one-to-one? Prove or disprove.

(3) Recall Example 8.11. Let πn : Z→ Zn be given by πn(x) = x.
Prove that πn is not one-to-one.
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Figure 12. A function f : A → B with range C. We
say that f is onto if and only if C = B.

We now discuss the property of being “onto” that a function may
or may not possess.

Definition 8.29. Let A and B be sets and f : A → B. Let C be
the range of f . We say that f is onto, or surjective, if B = C. See
Figure 12.
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Example 8.30. The function f in Figure 9 is onto because the
range of f is all of B.
The function g in Figure 9 is not onto because 12 is not in the range
of g.
The function h in Figure 9 is onto because the range of h is all of F .
The function k in Figure 9 is not onto because −18 is not in the the
range of k.

Too Much Information 8.31. Let f : A→ B be a function with
range C. See Figure 12. To show that f is onto one must show that
C = B. By the definition of a function we have that C ⊆ B, that is,
the range of f is contained in B. Hence, to show that f is onto, one
must show that B ⊆ C. That is, given any element x ∈ B one must
show that x ∈ C. This is formulated in How To 8.32.

How To 8.32. Show that a function f : A→ B is onto

• Let b be an arbitrary element of B.
• Show that there exists an element a ∈ A with f(a) = b.

Example 8.33. Let f : R→ R be given by f(x) = 2x− 5. Then f
is onto.

Proof. Let b ∈ R.
〈We must find a ∈ R with f(a) = b. This amounts to solving the
equation 2a− 5 = b for a, which gives a = (b+ 5)/2. See Figure 13 for
a picture illustrating this proof.〉
Let a = (b+ 5)/2.
We have that a ∈ R since b ∈ R.
Furthermore, f(a) = f((b+ 5)/2) = 2[(b+ 5)/2]− 5 = b.
Hence f is onto. �

How To 8.34. Show that a function f : A→ B is NOT onto
Find an element b ∈ B that is not in the range of f .

Example 8.35. Consider the function f : Z → N ∪ {0} given by
the formula f(x) = x2. Then f is not onto.

Proof. 〈We give a proof by contradiction. We will show that 2 is
not in the range of f .〉
Suppose that the element 2 is in the range of f .
Then there exists x ∈ Z with f(x) = 2.
Hence x2 = 2.
By Theorem 4.53 we know that this is not possible since the square
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Figure 13. An illustration of the proof of Example 8.33

root of two is not an integer.
Hence 2 is not in the range of f .
Therefore f is not onto. �

Check for Understanding 8.36. (1) Recall Example 8.11.
Let πn : Z → Zn be the reduction modulo n map given
by the formula πn(x) = x. Is πn is onto? Prove or disprove.

(2) Let f : Z → Z be given by f(x) = 2x. Is f onto? Prove or
disprove.
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Definition 8.37. Let A and B be sets and f : A → B. We say
that f is bijective, or f is a bijection, if f is both surjective and
injective.

Example 8.38. The function f in Figure 9 is bijective because f
is both injective and surjective.
The function g in Figure 9 is not a bijection because it is not surjective.
The function h in Figure 9 is not a bijection because it is not injective.
The function k in Figure 9 is neither injective nor surjective, and hence
k is not a bijection.

Figure 14. A picture of f2 from Example 8.39

Example 8.39. Recall Example 8.18. Let n be an integer with
n ≥ 2. Let a be an integer. Define the function fa : Zn → Zn where
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fa(x) = a · x. When is fa a bijection? We answer this question in
Proposition 8.41, but first we give some examples.

In Example 8.17 we saw that f3 : Z4 → Z4 given by f3(x) = 3 · x is
a bijection. Let’s try another one. Let us keep n = 4 and compute the
function f2. We see that

f2(0) = 2 · 0 = 0,

f2(1) = 2 · 1 = 2,

f2(2) = 2 · 2 = 4 = 0, and

f2(3) = 2 · 3 = 6 = 2.

See Figure 14 for a picture of f2. Notice that f2 is not a bijection.

Lemma 8.40. Let n be an integer with n ≥ 2. Let a be any integer.
If gcd(a, n) = 1, then there exists an element b ∈ Zn with

b · a = a · b = 1.

Proof. By Theorem 4.63, there exist integers b and c such that
ba+ cn = 1 because gcd(a, n) = 1.
Therefore ba+ cn = 1 in Zn.
Hence b · a+ c · n = 1 by Proposition 7.27.
It follows that b · a = 1 because n = 0 in Zn.
Furthermore, b · a = ba = ab = a · b by the properties of the integers.
Therefore, b · a = a · b = 1. �

Proposition 8.41. Recall Example 8.18. Let n be an integer with
n ≥ 2. Let a be an integer. Define the function fa : Zn → Zn where
fa(x) = a · x. If gcd(a, n) = 1, then fa : Zn → Zn is a bijection.

Proof. By Lemma 8.40 we have that there exists an element b ∈
Zn with

b · a = a · b = 1

since gcd(a, n) = 1.
〈We now show that fa is a bijection. We start by showing that fa is
one-to-one.〉
Suppose that fa(x) = fa(y) for some x, y ∈ Zn.
Then a · x = a · y by the definition of fa.
Multiplying on the left by b gives us that b · a · x = b · a · y.
Thus x = y since b · a = 1.
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Therefore fa is one-to-one.

〈We now show that fa is onto.〉
Let y ∈ Zn.
Then b · y ∈ Zn and fa(b · y) = a · b · y = y since a · b = 1.
Therefore fa is onto.

�

Too Much Information 8.42. In Exercise 8 you will show that
fa is not a bijection if gcd(a, n) > 1.

8.4. Composition of functions

Definition 8.43. Let A,B, and C be sets. Let f : A → B and
g : B → C. The composition of f and g, denoted by g ◦f , is defined
to be the function from A to C that satisfies the formula

(g ◦ f)(x) = g(f(x)).

See Figure 15.

Too Much Information 8.44. In set theoretic terms,

g ◦ f = {(a, g(f(a))) | a ∈ A}.
We leave it as Exercise 1 to show that g ◦ f satisfies the properties of
Definition 8.1.

Example 8.45. Let A = {−1, 5, 3}, B = {7, 0,−3.2}, and C =
{π, 4,−1}. Define the function f : A→ B by f(−1) = 7, f(5) = −3.2,
and f(3) = 0. Define the function g : B → C by g(7) = 4, g(0) = −1,
and g(−3.2) = π. Then the function g ◦ f : A → C is computed as
follows:

(g ◦ f)(−1) = g(f(−1)) = g(7) = 4
(g ◦ f)(5) = g(f(5)) = g(−3.2) = π
(g ◦ f)(3) = g(f(3)) = g(0) = −1

Pictorally, one can see the above computation in Figure 16. For ex-
ample, to compute (g ◦ f)(5) follow the dotted arrows. These arrows
match up with the computation given above. The function g ◦ f can
be pictured in Figure 17.

Example 8.46. Let f : R → R and g : R → R be given by the
formulas f(x) = 2x− 1 and g(x) = x2. Then g ◦ f : R→ R is given by
the formula (g◦f)(x) = g(f(x)) = g(2x−1) = (2x−1)2 = 4x2−4x+1.
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Figure 15. A diagram illustrating Definition 8.43.

Proposition 8.47 (The composition of two onto functions is an
onto function). Let A, B, and C be sets. Suppose that f : A→ B is an
onto function and g : B → C is an onto function. Then g ◦ f : A→ C
is an onto function.

Proof. 〈The proof ouline is as follows. To show that g◦f : A→ C
is onto we use How To 8.32. That is, given c ∈ C we need to find an
a ∈ A with (g ◦ f)(a) = c. To do this, we start with an element c ∈ C.
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Figure 16. A picture of f and g from Example 8.45.
The dotted lines illustrate the computation of (g ◦ f)(5).

We then use the fact that g is onto to “pull back” c to an element
b ∈ B. We then use the fact that f is onto to “pull back” b to an
element a ∈ A. See Figure 18 for a picture illustrating this proof.〉
Let c ∈ C.
Since g : B → C is onto, there exists some b ∈ B with g(b) = c.
Since f : A→ B is onto, there exists some a ∈ A with f(a) = b.
Thus (g ◦ f)(a) = g(f(a)) = g(b) = c.
Therefore, for any c ∈ C, there exists a ∈ A with (g ◦ f)(a) = c.
This implies that g ◦ f is onto. �
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Figure 17. A picture of g ◦ f from Example 8.45

Proposition 8.48 (The Composition of two one-to-one functions is
a one-to-one function). Let A, B, and C be sets. Suppose that f : A→
B is a one-to-one function and g : B → C is a one-to-one function.
Then g ◦ f : A→ C is a one-to-one function.

Proof. Let a1, a2 ∈ A and suppose that (g ◦ f)(a1) = (g ◦ f)(a2).
〈We must show that a1 = a2.〉
We have that g(f(a1)) = g(f(a2)) by the definition of “composition”.
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Figure 18. A picture illustrating the proof of Theorem 8.47

Therefore f(a1) = f(a2) because g is one-to-one.
Therefore a1 = a2 because f is one-to-one.
This implies that g ◦ f is one-to-one. �

Corollary 8.49 (The composition of two bijective functions is a
bijective function). Let A, B, and C be sets. Suppose that f : A→ B
is a bijection and g : B → C is a bijection. Then g ◦ f : A → C is a
bijection.
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Proof. Both g and f are surjective by the definition of “bijection”.
Therefore g ◦ f is surjective by Proposition 8.47.
Both g and f are injective by the definition of “bijection”.
Therefore g ◦ f is injective by Proposition 8.48.
Thus g ◦ f is bijective. �

8.5. Inverse functions

Definition 8.50. Let A and B be sets and f : A→ B be a one-to-
one function. Let C be the range of f . Define the function f−1 : C → A
by f−1(c) = a if and only if f(a) = c. See Figure 19.

Too Much Information 8.51. The definition of f−1 given in
Definition 8.50 is a well-defined function. We leave the details of this
fact to the reader in Exercise 1. The basic outline is as follows: Def-
inition 8.50 is well-defined because f is one-to-one. That is, given an
element c in the range of f there exists one and only one element a
with f(a) = c. This allows us to define f−1(c) = a.

Example 8.52. LetA = {1, 7,−2, 10} andB = {13, π, 1.5, 2.71, 1/2, 10}.
Define the function f : A→ B by the formula

f(a) =


π , if a = 1
13 , if a = 7

2.71 , if a = −2
1/2 , if a = 10

Let C be the range of f . Then C = {13, π, 2.71, 1/2}. See Figure 20
for a picture of f .

Note that f is one-to-one. Thus we may construct f−1 : C → A.
We see that f−1(13) = 7 because f(7) = 13, f−1(π) = 1 because
f(1) = π, f−1(2.71) = −2 because f(−2) = 2.71, and f−1(1/2) = 10
because f(10) = 1/2. See Figure 21 for a picture of f−1. Note that
f−1 is one-to-one and onto.

Proposition 8.53. Let f : A → B be a one-to-one function. Let
C be the range of f . Let f−1 : C → A be the inverse function of f .
Then

(1) The domain of f−1 equals the range of f .
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Figure 19. A figure illustrating Definition 8.50. Here
f : A → B is a one-to-one function with range equal to
C.
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Figure 20. f from Example 8.52

(2) The range of f−1 equals the domain of f . In particular, f−1

is onto A.
(3) f−1 is one-to-one.
(4) (f−1 ◦ f)(a) = a for all a ∈ A. That is, f−1 ◦ f = iA.
(5) (f ◦ f−1)(c) = c for all c ∈ C. That is, f−1 ◦ f = iC.

Proof. (1) This follows from the definition of f−1.

(2) Let a ∈ A.
Then f(a) = c for some c ∈ C.
Thus f−1(c) = a by the definition of f−1.
Therefore f−1 is onto A.
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Figure 21. f−1 from Example 8.52

(3) Let c1 and c2 be elements of C and suppose that f−1(c1) = a =
f−1(c2) where a ∈ A.
Then c1 = f(a) = c2 by the definition of f−1.
Hence f−1 is one-to-one.

(4) Let a ∈ A.
Applying f to a we get that f(a) = c for some c ∈ C.
Applying f−1 to c we get that f−1(c) = a by the definition of f−1.
Hence (f−1 ◦ f)(a) = f−1(f(a)) = f−1(c) = a.

(5) Let c ∈ C.
There exists a unique element a ∈ A such that f(a) = c because C is
the range of f and f is one-to-one.
Thus f−1(c) = a by the definition of f−1.
Hence (f ◦ f−1)(c) = f(f−1(c)) = f(a) = c. �
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Example 8.54. Let R∗ = R \ {0}. If x is a real number then
(2x − 1)/x is defined for all non-zero x. Hence we may define the
function f : R∗ → R given by the formula f(x) = (2x − 1)/x. See
Figure 22 for a picture of part of the graph of f .

What is the range of f? Let y ∈ R. Note that y is in the range iff
there exists an x ∈ R∗ with f(x) = (2x − 1)/x = y. Solving for x in
this equation we see that x = 1/(2−y). Therefore if y is a real number
with y 6= 2 then

f

(
1

2− y

)
=

2( 1
2−y )− 1

1
2−y

= y

giving that y is in the range of f . Thus the range of f is R \ {2}.

-4 -2 2 4

-4

-2

2

4

Figure 22. The graph of f(x) =
2x− 1

x

We now check that f is one-to-one. Suppose that f(x1) = f(x2)
for some x1, x2 ∈ R∗. Then (2x1 − 1)/x1 = (2x2 − 1)/x2 which implies
that 2x1x2 − x2 = 2x2x1 − x1 which implies that x1 = x2. Therefore f
is one-to-one.

Since f is one-to-one we may define the inverse function f−1 : R \
{2} → R∗. Note that f−1(y) = x iff and only if f(x) = y. Hence to find
a formula for the inverse of f we start with the formula y = (2x− 1)/x
and solve for x. Solving for x we get that x = 1/(2 − y). Hence
f−1(x) = 1/(2− x).
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8.6. Image and pre-image of a function

Definition 8.55. Let A and B be sets and let f : A → B. Let
X ⊆ A. The image of X under f is defined to be

f(X) = {f(x) | x ∈ X}.

Example 8.56. Let A = {−1, 5, 10, π, 2.5, 17, 1, 13} and
B = {100, 21, 1.213, 6, 14,−1, 2}. Let f : A → B be defined as the
function satisying f(−1) = 100, f(5) = 21, f(10) = 14, f(π) = 14,
f(2.5) = 1.213, f(17) = −1, f(1) = 2, and f(13) = −1. Let X =
{10, π, 2.5, 17}. Then

f(X) = {f(10), f(π), f(2.5), f(17)}
= {14, 14, 1.213,−1}
= {14, 1.213,−1}.

That is, we apply f to each element of X and see what we get. See
Figure 23 for a picture of f and f(X).

Definition 8.57. Let A and B be sets and let f : A → B. Let
Y ⊆ B. The inverse image of Y under f is defined to be

f−1(Y ) = {a ∈ A | f(a) ∈ Y }.

Example 8.58. Let A, B, and f be as in Example 8.56. Let Y =
{6,−1, 2}. To calculate f−1(Y ) one must find all a ∈ A where f(a) ∈
Y . That is, follow the arrows backwards from Y . We see that f(17),
f(1) and f(13) are all in Y . Thus, f−1(Y ) = {17, 1, 13}. Note that no
element of A maps to 6, which is in Y . See Figure 24 for a picture of
f and f−1(Y ).

Proposition 8.59. Suppose that X, Y,W,Z,A,B are sets. Let f :
X → Y , W ⊆ X, Z ⊆ X, A ⊆ Y , and B ⊆ Y . Then the following are
true:

(1) f(W ∩ Z) ⊆ f(W ) ∩ f(Z).
(2) f(W ∪ Z) = f(W ) ∪ f(Z).
(3) f−1(A ∩B) ⊆ f−1(A) ∪ f−1(B).
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(4) f−1(A ∪B) = f−1(A) ∪ f−1(B).
(5) X − f−1(A) ⊆ f−1(Y − A).
(6) W ⊆ f−1(f(W )).

Proof. Prove some of these and then leave the rest as exercises.
See the exercises below and modify them to match up. �

8.7. Application: Pythagorean triples

Consider a right triangle with sides x and y and hypotenuse z.
See Figure 1. From the Pythagorean theorem, we know that triples
of positive numbers (x, y, z) correspond to right triangles with sides x
and y and hypotenuse z.

Definition 8.60. We say that the triple (x, y, z) is a Pythagorean
triple if x, y, and z are integers that satisfy the equation x2 + y2 = z2

and where z 6= 0.

Example 8.61. (3, 4, 5) is a Pythagorean triple since 32 + 42 = 52.
(6,−8, 10) is a Pythagorean triple since 62 + (−8)2 = 102.
(2, 1, 5) is not a Pythagorean triple since 22 + 12 6= 52.
(1, 0, 1) is a Pythagorean triple since 12 + 02 = 12. Note that the y
coordinate of (1, 0, 1) is zero.
(0, 0, 0) is not a Pythagorean triple since the z-coordinate is zero.

Too Much Information 8.62. Notice that there are “more”
Pythagorean triples than there are right triangles with integer sides.
For example, (0, 1, 1) is a Pythagorean triple since 02 + 11 = 11, even
though there is no right triangle with side length 0. And (−3, 4,−5)
is a Pythagorean triple since (−3)2 + 41 = (−5)1, even though there is
no right triangle with sides of negative length.

In this section we will answer the following questions.

Questions 8.63. (1) How many Pythagorean triples are there?
Are there an infinite number of them?

(2) If there are an infinite number of Pythagorean triples how do
we generate all of them?
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Too Much Information 8.64. . Suppose that (x, y, z) is a
Pythagorean triple. Then x2 + y2 = z2. Let λ ∈ Z with λ 6= 0. Multi-
plying x2 + y2 = z2 by λ2 on both sides yields (λx)2 + (λy)2 = (λz)2.
Hence (λx, λy, λz) is a Pythagorean triple.

Example 8.65. The answer to Question 1 is that there are an
infinite number of triples. Let us illustrate this fact with an example
using the method of Remark 8.64. Let (x, y, z) = (3, 4, 5). Multiplying
(3, 4, 5) by various values of λ gives the following:

...
λ = −3 gives (3λ, 4λ, 5λ) = (−9,−12,−15)
λ = −2 gives (3λ, 4λ, 5λ) = (−6,−8,−10)
λ = −1 gives (3λ, 4λ, 5λ) = (−3,−4,−5)
λ = 2 gives (3λ, 4λ, 5λ) = (6, 8, 10)
λ = 3 gives (3λ, 4λ, 5λ) = (9, 12, 15)
λ = 4 gives (3λ, 4λ, 5λ) = (12, 16, 20)

...

We see that one can get an infinite number of solutions to x2 +y2 =
z2 given a starting solution. However, we can’t get all the solutions
starting with just (3, 4, 5). We need more starting triples. For example,
(5, 12, 13) is a Pythagorean triple but it is not a multiple of (3, 4, 5).
Consider the triple (297, 1620, 1647). Notice that 27 is a divisor of each
of the numbers 297, 1620, and 1647. The triple (297, 1620, 1647) comes
from multiplying the triple (11, 60, 61) by 27.

Definition 8.66. Let x, y, and z be integers, not all zero. An
integer d is a common divisor of x, y, and z if d|x, d|y, and d|z. We
say that d is the greatest common divisor of x, y, and z if d is a
positive common divisor of x, y, and z and d ≥ d′ for every common
divisor d′ of x, y, and z. We write d = gcd(x, y, z) if d is the greatest
common divisor of x, y, and z.

Example 8.67. Let us calculate gcd(2, 4, 5). The divisors of 2 are
1 and 2. The divisors of 4 are 1, 2, and 4. The divisors of 5 are 1 and
5. There is only one common divisor of 2, 4, and 5. It is 1. Hence
1 = gcd(2, 4, 5).

Example 8.68. Let us calculate gcd(6, 12, 9). The divisors of 6 are
1, 2, 3, and 6. The divisors of 12 are 1, 2, 3, 6, and 12. The divisors
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of 9 are 1, 3, and 9. The common divisors of 6, 12, and 9 are 1 and 3.
Thus gcd(6, 12, 9) = 3.

Definition 8.69. Let (x, y, z) be a Pythagorean triple. We say
that (x, y, z) is primitive if gcd(x, y, z) = 1.

Example 8.70. (3, 4, 5) is primitive since gcd(3, 4, 5) = 1.
(297, 1620, 1647) is not primitive since gcd(297, 1620, 1647) = 27.

Lemma 8.71. If (x, y, z) is a Pythagorean triple, then there exists
a primitive Pythagorean triple (a, b, c) where (x, y, z) = (λ ·a, λ · b, λ · c)
for some integer λ. Moreover, a = x/d, b = y/d, and c = z/d where
d = gcd(a, b, c).

Proof. 〈We need to find a primitive triple that (x, y, z) is a mul-
tiple of. We do this by dividing x, y, and z by gcd(x, y, z)〉
Let d = gcd(x, y, z).
Then x = da, y = db, and z = dc for some integers a, b, c.
Note that a = x/d, b = y/d, and c = z/d.
Note that x2 + y2 = z2 since (x, y, z) is a Pythagorean triple.
Therefore, a2 + b2 = (x/d)2 + (y/d)2 = (z/d)2 = c2.
Hence (a, b, c) is a Pythagorean triple.
〈We now show that (a, b, c) is primitive.〉
Suppose that k is a positive integer such that k|a, k|b, and k|c.
Hence a = km, b = kn, and c = kr where m,n, r are integers.
So x = (dk)m, y = (dk)n, and z = (dk)r.
Thus dk|x, dk|b, and dk|c.
Hence dk is a common divisor of x, y, and z.
Therefore d ≥ dk since d = gcd(x, y, z).
On the other hand dk ≥ d since d and k are both positive integers.
We must have that k = 1.
Therefore gcd(a, b, c) = 1.
Hence (a, b, c) is a primitive Pythagorean triple. �

Too Much Information 8.72. Let (x, y, z) be a Pythagorean
triple. We saw above that (λ · x, λ · y, λ · z) is a Pythagorean triple for
any nonzero integer λ. Another way to generate triples from (x, y, z) is
to multiply the components by −1. For example, (3, 4, 5) generates the
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triples (3, 4, 5), (3, 4,−5), (3,−4, 5), (3,−4,−5), (−3, 4, 5), (−3, 4,−5),
(−3,−4, 5), and (−3,−4,−5).

Example 8.73. (30,−72,−78) is a Pythagorean triple.
Note that (5,−12,−13) is a primitive Pythagorean triple and (30,−72,−78) =
(6 · 5, 6 · (−12), 6 · (−13)).
Also, (5,−12,−13) can be gotten by multiplying the second and third
components of the positive triple (5, 12, 13) by −1.
Hence, we may “generate” the triple (30,−72,−78) from the positive
primitive Pythagorean triple (5, 12, 13).

Too Much Information 8.74. The idea in Example 8.73 shows
us that the problem of finding all Pythagorean triples boils down to the
problem of finding all the positive, primitive Pythagorean triples. For
let (x, y, z) be a Pythagorean triple. Then (x, y, z) is an integer multiple
of a primitive Pythagorean triple (a, b, c) by Lemma 8.71. Multiplying
the negative components of (a, b, c) by −1 gives us a positive, primitive
Pythagorean triple.

Let Φ be the set of all non-negative, primitive Pythagorean triples.
That is, let

Φ = {(x, y, z) | x2 + y2 = z2, x, y, z ∈ Z, x ≥ 0, y ≥ 0, z > 0, gcd(x, y, z) = 1}
= {(1, 0, 1), (0, 1, 0), (3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), . . .}.

Our goal is to find a formula that generates all of the elements of
Φ. How will we accomplish this goal? We will use geometry! Consider
the following set:

Û = {(r, s) | r2 + s2 = 1, r ≥ 0, s ≥ 0, r, s ∈ Q}.

That is, Û is the set of rational points on the unit circle. See Figure

26 for a picture of Û . See the note below the figure. For example

(3/5, 4/5) is in Û since 3/5 and 4/5 are rational numbers and (3/5)2 +
(4/5)2 = 1. It turns out that there is a one-to-one correspondence

between Φ and Û . Consider the function

(4) f : Φ→ Û given by f(x, y, z) = (x/z, y/z).

For example, (3, 4, 5) ∈ Φ and f(3, 4, 5) = (3/5, 4/5). See Figure 27.
Our goal is to show that f is a bijection. Once we have established this

fact, we will give a formula to enumerate the elements of Û . Then we
will use the formula to give a formula for the elements of Φ.

We first show that f is one-to-one. We will need the following
lemma.
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Lemma 8.75. Let a, b, and c be integers with a 6= 0. If a|bc and
gcd(a, b) = 1, then a|c.

Proof. By Theorem 4.63 and the fact that gcd(a, b) = 1, there
exist integers x and y with ax+ by = 1.
In addition we have that bc = ak for some integer k since a divides bc.
Therefore, acx+ bcy = c.
Hence a(cx+ by) = c.
This gives that a|c. �

Proposition 8.76. The function f : Φ→ Û given by equation (4)
is one-to-one.

Proof. Suppose that (a, b, c), (x, y, z) ∈ Φ with x, y, z, a, b, c > 0
and f(x, y, z) = f(a, b, c).
〈We leave it to the reader to check the case where one of x, y, a, b are
zero.〉
We have that (x/z, y/z) = (a/c, b/c).
Hence (a, b, c) = ((c/z) · x, (c/z) · y, (c/z) · z).
By reducing the fraction c/z into lowest terms there exists c′/z′ ∈ Q
with c′/z′ = c/z and gcd(c′, z′) = 1.
Hence a = (c′/z′) · x, b = (c′/z′) · y, and c = (c′/z′) · z.
Thus az′ = c′x, bz′ = c′y, and cz′ = c′z.
So z′|c′x, z′|c′y, and z′|c′z.
By Lemma 8.75 and the fact that gcd(z′, c′) = 1 we have that z′|x, z′|y,
and z′|z.
Therefore z′ = 1 since gcd(x, y, z) = 1.
Similarly c′|az′, c′|bz′, and c′|cz′.
By Lemma 8.75 and the fact that gcd(z′, c′) = 1 we have that c′|a, c′|b,
and c′|c.
Therefore c′ = 1 since gcd(a, b, c) = 1.
This gives that (a, b, c) = (x, y, z).
Hence f is one-to-one. �

We now show that f is onto. As above, we need a lemma.
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Lemma 8.77. Let a and b be integers, not both zero. Let d =
gcd(a, b). Then gcd(a/d, b/d) = 1.

Proof. We have that a = dk and b = dl for some integers k, l.
Suppose that m is a positive integer with m|k and m|l.
Note that dm divides both a and b.
Hence dm is a common divisor of a and b.
Thus d ≥ dm because d is the greatest common divisor of a and b.
Therefore m = 1 since m is a positive integer.
Hence gcd(a/d, b/d) = gcd(k, l) = 1.

�

Proposition 8.78. The function f : Φ→ Û given by equation (4)
is onto.

Proof. Let (x/y, w/z) be a rational point in Û .
By reducing the fractions into lowest terms, we may assume that gcd(x, y) =
1 and gcd(w, z) = 1.
Let d = gcd(y, z).
We have that (x/y)2 + (w/z)2 = 1.
Hence (xz)2 + (wy)2 = (yz)2.
Therefore (xz/d)2 + (wy/d)2 = (yz/d)2.
Since xy/d, wy/d, and yz/d are integers, we have that (xz/d, wy/d, yz/d)
is a Pythagorean triple.
〈We now show that (xz/d, wy/d, yz/d) is a primitive triple, which will
complete the proof since f(xy/d, wy/d, yz/d) = (x/y, w/z). We do this
by contradiction.〉
Suppose that p is a prime with p|(xz/d), p|(wy/d), and p|(yz/d).
Since p|x · (z/d), by Theorem 4.67, we have that p|x or p|(z/d).
Case 1: Suppose that p|x.
Since p|w · (y/d) we have that p|w or p|(y/d).
Note that p cannot divide y/d since if it did then p would divide y
which can’t happen since gcd(x, y) = 1 and p|x by assumption.
Suppose that p divides w.
Since p|y · (z/d) and p is prime, by Theorem 4.67, we have that p|y or
p|z/d.
Again p cannot divide y since gcd(x, y) = 1.
Note that p cannot divide z/d since if it did then p would divide z
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which can’t happen since gcd(w, z) = 1 and p|w by assumption.
Hence p does not divide x.
Case 2: Suppose that p|(z/d).
Hence p|z.
Since p|w · (y/d) we have that p|w or p|(y/d).
As above, p cannot divide w since gcd(z, w) = 1 and p|z.
Note that p cannot divide y/d since p|(z/d) and by Lemma 8.77 we
have that gcd(y/d, z/d) = 1.
Hence p does not divide z/d.

Therefore, there is no prime p with p|(xz/d), p|(wy/d), and p|(yz/d).
Thus, gcd(xz/d, wy/d, yz/d) = 1.
Hence, (xz/d, wy/d, yz/d) is a primitive Pythagorean triple with f(xz/d, wy/d, yz/d) =
(x/y, w/z).
Therefore f is onto. �

Corollary 8.79. Let (x/y, w/z) be a rational point in Û with
gcd(x, y) = 1 and gcd(w, z) = 1. Let d = gcd(y, z). Then

f−1(x/y, w/z) = (xz/d, wy/d, yz/d)

Proof. See the proof of Proposition 8.78. �

Example 8.80. (8/17, 15/17) ∈ Û .
Set x = 8, y = 17, w = 15, z = 17, and d = gcd(17, 17) = 17. Then by
Corollary 8.79 we have that f−1(8/17, 15/17) = (8, 15, 17).

Define the function g : Q∩ [0, 1]→ Û as follows: Let t be a rational
number with 0 ≤ t ≤ 1. Consider the line y = tx+ t that goes through
the points (−1, 0) and (0, t). The line y = tx + t intersects the unit
circle x2 + y2 = 1 at two points. One of these points is (−1, 0). Let
g(t) denote the other point. See Figure 28.

Proposition 8.81.

g(t) =

(
1− t2

1 + t2
,

2t

1 + t2

)
.

Proof. Suppose that g(t) = (x, y).
Then x2 + y2 = 1 and y = tx+ t.
Substituting y = tx+ t into x2 + y2 = 1 gives x2 + (tx+ t)2 = 1.
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This reduces to (1 + t2)x2 + (2t2)x+ (t2 − 1) = 0.
Using the quadratic formula we see that

x =
−2t2 ±

√
(2t2)2 − 4(1 + t2)(t2 − 1)

2(1 + t2)

=
−2t2 ± 2

2 + 2t2

=
1− t2

1 + t2
or − 1.

Substituting x = −1 into y = tx+ t yields the point (x, y) = (−1, 0).
Substituting x = (1−t2)(1+t2) into y = tx+t gives y = 2t/(1+t2). �

Example 8.82. See Figure 29 for a partial picture of the function
g. As an example, g(1/2) = ((1 − (1/2)2)/(1 + (1/2)2), 2(1/2)/(1 +
(1/2)2) = (3/5, 4/5). The reader may wish to check that g(0) = (1, 0),
g(1/4) = (15/17, 8/17), and g(3/4) = (7/25, 24/25).

Proposition 8.83. g : Q ∩ [0, 1]→ Û is a well-defined bijection.

Proof. 〈We leave it to the reader to show that g is well-defined;
see exercise ??.〉
We first show that g is one-to-one.
Suppose that g(t) = g(s) where s, t are rational numbers.
Then g(t) = (x1, tx1 + t) and g(s) = (x2, sx2 +s) for some real numbers
x1, x2.
Thus (x1, tx1 + t) = (x2, sx2 + s) since g(t) = g(s).
Hence x1 = x2.
Substituting x1 = x2 into tx1 + t = sx2 + s gives t = s.
Thus g is one-to-one.
We now show that g is onto.

Let (a/b, c/d) ∈ Û .
Set t = (c/d)/(a/b+ 1).
Since a/b+1 ≥ 1 and c/d ≤ 1, we see that t = (c/d)/(a/b+1) ≤ 1/1 =
1.
Hence t ∈ Q ∩ [0, 1].
Using the facts that a2/b2 + c2/d2 = 1 and −c2/d2 = a2/b2− 1 we have



8. FUNCTIONS 170

that

g(t) =

(
1− (c/d)2/(a/b+ 1)2

1 + (c/d)2/(a/b+ 1)2
,

2((c/d)/(a/b+ 1))

1 + (c/d)2/(a/b+ 1)2

)
=

(
(a/b+ 1)2 − (c/d)2

(a/b+ 1)2 + (c/d)2
,

2(c/d)(a/b+ 1)

(a/b+ 1)2 + (c/d)2

)
=

(
a2/b2 + 2a/b+ 1− c2/d2

a2/b2 + 2a/b+ 1 + c2/d2
,

2ac/bd+ 2c/d

a2/b2 + 2a/b+ 1 + c2/d2

)
=

(
2a2/b2 + 2a/b

2(a/b+ 1)
,
(c/d)(2a/b+ 2)

2(a/b+ 1)

)
= (a/b, c/d).

Hence g is onto. �

Example 8.84. The main idea now is to look at the function f−1 ◦
g : Q ∩ [0, 1] → Φ. We will see in Theorem 8.87 that f−1 ◦ g is
a bijection. Hence we may enumerate the elements of Φ by plugging
rational numbers in the interval [0, 1] into f−1◦g. For example, plugging
t = 2/3 into f−1 ◦ g gives

f−1(g(2/3)) = f−1(
(
(32 − 22)/(32 + 22), (2 · 3 · 2)/(32 + 22)

)
)

= f−1((5/13, 12/13)) = (5, 12, 13).

Similarly, plugging t = 3/5 into f−1 ◦ g gives

f−1(g(3/5)) = f−1(
(
(52 − 32)/(52 + 32), (2 · 5 · 3)/(52 + 32)

)
)

= f−1((8/17, 15/17)) = (8, 15, 17).

See Figure 30 for a picture of the above computations.

Too Much Information 8.85. In Theorem 8.87 we give a for-
mula to enumerate all of the non-negative Pythagorean triples. There is
one slight wrinkle that we wish to clarify before getting to the theorem.
The formula for f−1 given in Corollary 8.79 says that f−1(x/y, w/z) =
(xz/d, wy/d, yz/d) where gcd(x, y) = 1 and gcd(w, z) = 1 and d =
gcd(y, z). We will be plugging g(m/n) = ((n2−m2)/(n2+m2), 2mn/(n2+
m2)) into f−1. The issue that we will confront is that we may have
gcd((n2−m2)/(n2 +m2)) 6= 1 and/or gcd((2mn)/(n2 +m2)) 6= 1. How-
ever we will discover when this occurs and correct the problem. It turns
out that we will just need to divide the numbers n2−m2, n2 +m2, and
2mn by the number 2. We work this out in Lemma 8.86.



8. FUNCTIONS 171

Lemma 8.86. Let m and n be integers with n ≥ m ≥ 0, n 6= 0, and
gcd(m,n) = 1.

(1) If m is odd and n is even, or if m is even and n is odd, then
gcd(n2 −m2, n2 +m2) = 1 and gcd(2mn, n2 +m2) = 1.

(2) If m is odd and n is odd, then gcd((n2−m2)/2, (n2+m2)/2) = 1
and gcd(mn, (n2 +m2)/2) = 1.

Proof. (1) Suppose that m is odd and n is even, or m is even
and n is odd.
Then n2 −m2 and n2 +m2 are both odd.
We will show that there is no odd prime p that is a common
divisor of n2 −m2 and n2 +m2.
〈We may assume that p is odd since n2−m2 and n2 +m2 are
both odd.〉
Suppose that such a p exists.
Then p divides (n2 −m2) + (n2 +m2) = 2n2 and (n2 +m2)−
(n2 −m2) = 2m2.
Since p is odd and p|2n2, we have that p|n by Theorem 4.67.
Similarly p|m.
But then gcd(m,n) ≥ p which is a contradiction.
Thus, gcd(n2 −m2, n2 +m2) = 1.
We now show that gcd(2mn, n2 +m2) = 1.
Again suppose that p is a prime that is a common divisor of
2mn and n2 +m2.
Since n2 +m2 is odd we must have that p is odd.
Since p is odd and p|2mn we must have that p|m or p|n by
Theorem 4.67.
If p|m then since p|n2 +m2 we must have that p|n.
This can’t happen since gcd(m,n) = 1.
Similarly if p|n then since p|n2 +m2 we must have that p|m.
This can’t happen since gcd(m,n) = 1.
Thus, no such p exists.
Therefore, gcd(2mn, n2 +m2) = 1.

(2) We leave this case to the reader. See Exercise 1.
�

Theorem 8.87. Let m and n be integers with n ≥ m ≥ 0, n 6= 0,
and gcd(m,n) = 1.
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(1) If m is odd and n is even, or if m is even and n is odd,
then (n2 − m2, 2mn,m2 + n2) is a non-negative, primitive,
Pythagorean triple.

(2) If m and n are both odd then ((n2 −m2)/2,mn, (m2 + n2)/2)
is a non-negative, primitive, Pythagorean triple.

Furthermore, all non-negative, primitive Pythagorean triples are of one
of the above forms.

Proof. By Proposition 8.83, g : Q ∩ [0, 1]→ Û is a bijection.

By Propositions 8.76 and 8.78, f : Φ→ Û is a bijection.

By Proposition 8.53, f−1 : Û → Φ is a bijection.
By Corollary 8.49, f−1 ◦ g : Q ∩ [0, 1]→ Φ is a bijection.
Let t ∈ Q ∩ [0, 1].
Then t = m/n where n ≥ m ≥ 0, n 6= 0, and gcd(m,n) = 1.
By Proposition 8.81,

g(t) =

(
1− t2

1 + t2
,

2t

1 + t2

)
=

(
1− (m/n)2

1 + (m/n)2
,

2m/n

1 + (m/n)2

)
=

(
n2 −m2

n2 +m2
,

2mn

n2 +m2

)
We now use Corollary 8.79 to compute the f−1(g(t)).
We break this into two cases.
Case 1: Suppose that m is odd and n is even, or m is even and n is
odd.
By Lemma 8.86 gcd(n2−m2, n2 +m2) = 1 and gcd(2mn, n2 +m2) = 1.
Note that gcd(n2 +m2, n2 +m2) = n2 +m2.
By Corollary 8.79 we have that

f−1

(
n2 −m2

n2 +m2
,

2mn

n2 +m2

)
= (n2 −m2, 2mn, n2 +m2).

Case 2: Suppose that m is odd and n is odd.
By Lemma 8.86 gcd((n2−m2)/2, (n2 +m2)/2) = 1 and gcd(mn, (n2 +
m2)/2) = 1.
By Corollary 8.79 we have that

f−1

(
n2 −m2

n2 +m2
,

2mn

n2 +m2

)
= f−1

(
(n2 −m2)/2

(n2 +m2)/2
,

mn

(n2 +m2)/2

)
= ((n2 −m2)/2,mn, (n2 +m2)/2).
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�

8.8. Exercises

8.8.1. Exercises for section 8.1.

(1) Recall Example 8.11. Consider the function π4 : Z → Z4

given by π4(k) = k. Calculate π4(k) for all integers k with
−6 ≤ k ≤ 6. Then draw a picture of π4. What is the range of
π4?

8.8.2. Exercises for section 8.2.

(1) Let n ≥ 2 be an integer. Let a and b be any integers. Let
fa : Zn → Zn be given by fa(x) = a · x as in Exercise 8.18.
(a) Prove that fab = fba.
(b) Prove: If a ≡ b(mod n), then fa = fb.

(2) Let f : Q → Z be defined by f(m/n) = m. For example,
f(2/9) = 2 and f(5/10) = 5. Is f a well-defined function? If
so prove it. If not explain why not.

(3) Let n be an integer with n ≥ 2. Let a and b be integers with
a ≡ b(mod n). Prove that gcd(a, n) = gcd(b, n). Show that
this implies that f : Zn → Z defined by f(x) = gcd(x, n) is a
well-defined function.

(4) Let n and m be an integers with n ≥ 2 and m ≥ 2. Define the
function h : Zn → Zm by the formula h(x) = x. For example,
if n = 6 and m = 3 then h(5) = 5 = 2.
(a) Consider h : Z5 → Z2 defined as above. Show that h is

not well-defined by considering h(3) and h(8).
(b) Prove that h is well-defined if m divides n. That is, show

that if x = y, then h(x) = h(y).
(5) Let S = R× R. Define the relation ∼ where (a, b) ∼ (c, d) iff

a2 + b2 = c2 + d2. Recall from Chapter 7, Exercise 2 that ∼ is
an equivalence relation. Define the function f((a, b)) = a2+b2.
Prove that f is a well-defined function.

(6) Consider the function f : Zn → Zn given by f(x) = 2 · x + 1.
Is f a well-defined function? Prove or disprove.

(7) Consider the function f : Zn → Zn given by f(x) = x2 + x. Is
f a well-defined function? Prove or disprove.

8.8.3. Exercises for section 8.3.

(1) Consider the following functions. For each function f , (a)
either prove that f is one-to-one or give an example to show
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otherwise, and (b) either prove that f is onto, or give an exam-
ple to show otherwise. You will need the following definition.
Let M2(R) be the set of all 2 × 2 matrices with entries from
the real numbers. That is,

M2(R) =

{(
a b
c d

)
| a, b, c, d ∈ R

}
For example,

(
1 0
−10 π

)
is an element of M2(R).

(a) Let A = {2n|n ∈ Z}. This set is commonly referred to
as 2Z. Let f : Z → A given by f(k) = 2k. For example,
f(7) = 2 · 7 = 14.

(b) f : Q→ Q where f(x) = x3.
(c) f : R→ R where f(x) = x2.
(d) f : R→ R where f(x) = 2x.
(e) f : R→ R where f(x) = x4 − 16.

(f) f : M2(R)→ R where f

((
a b
c d

))
= a+ d.

(g) f : M2(R)→ R where f

((
a b
c d

))
= ad− bc.

(2) Let A = {1, 2, 3, 4} and B = {7, 8,−1, π, 1/2}.
(a) Give an example of a function f : A→ B that is one-to-

one.
(b) Give an example of a function f : A → B that is not

one-to-one.
(c) Give an example of a function f : B → A that is onto.
(d) Give an example of a function f : B → A that is not onto.

(3) Suppose that f : A → B and g : B → C. Prove: If f is not
one-to-one, then g ◦ f is not one-to-one.

(4) Suppose that f : A → B and g : B → C. Prove: If g is not
onto, then g ◦ f is not onto.

(5) Give an example of f : A → B and g : B → C where the
following are true:
(a) f is not onto, but g ◦ f is onto.
(b) g is not one-to-one, but g ◦ f is one-to-one.

(6) Consider the function f : Zn → Zn given by f(x) = x2. Recall
from Check for understanding 8.19 that f is a well-defined
function. Recall from Example 8.27 that f is not one-to-one.
(a) If n is even, show that the range of f equals the set{

x2 | x = 0, 1, . . . , n/2
}
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(b) If n is odd, show that the range of f equals the set{
x2 | x = 0, 1, . . . , (n− 1)/2

}
(c) If n > 2, prove that f is not onto.

(7) Let n be an integer with n ≥ 2. Let a be an integer. Define
ga : Zn → Zn by the formula ga(x) = x+ a.
(a) Prove that ga is well-defined.
(b) Draw a picture of g3 and g4 when n = 4.
(c) Prove that ga is one-to-one for general n.
(d) Prove that ga is onto for general n.

(8) Let n ≥ 2 be an integer. Let a be any integer. Let fa : Zn →
Zn be given by fa(x) = a · x as in Exercise 8.18. Recall from
Proposition 8.41 that if gcd(a, n) = 1, then fa is a bijection.
Prove that if gcd(a, n) > 1, then fa is not a bijection. [Hint:
Note that fa(0) = 0. Find k 6= 0 with fa(k) = 0.]

(9) Let n and m be an integers with n ≥ 2 and m ≥ 2. Define the
function h : Zn → Zm by the formula h(x) = x as in Exercise
4.
(a) Draw h : Z6 → Z3.
(b) If m|n prove that h : Zn → Zm is onto but not one-to-one.

8.8.4. Exercises for section 8.4.

(1) Prove that g◦f defined in Definition 8.43 is actually a function.
That is, show that g ◦ f satisfies the conditions of Definition
8.1.

(2) Let n ≥ 2 be an integer. Let a and b be any integers. Let
fa : Zn → Zn be given by fa(x) = a · x as in Exercise 8.18.
Prove that fa ◦ fb = fab.

8.8.5. Exercises for section 8.5.

(1) Show that f−1 defined in Definition 8.50 is a well-defined func-
tion.

(2) Let A = {1, 2, 3, 4}. Let iA : A → A be the identity function
on A.
(a) Let f : A → A where f(1) = 3, f(2) = 1, f(3) = 2, and

f(4) = 4. Draw a picture of f . Draw a picture of f−1.
Show that f ◦ f−1 = iA and f−1 ◦ f = iA.

(b) Let g : A → A where g(1) = 1, g(2) = 3, g(3) = 4, and
g(4) = 2. Draw a picture of g. Draw a picture of g−1.
Show that g ◦ g−1 = iA and g−1 ◦ g = iA.
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8.8.6. Exercises for section 8.6.

(1) Let π6 : Z → Z6 be the reduction modulo 6 map defined by
π6(n) = n. For example, π6(2) = 2 and π6(18) = 18 = 0 since
18 ≡ 0(mod 6).
(a) Calculate π6(−1), π6(10), π6(7), and π6(−17). Draw a

picture of the π6 map.
(b) Let X = {1, 17,−5, 102,−13}. Calculate π6(X).
(c) Let Y = {0}. Prove that π−1

6 (Y ) = {6k|k ∈ Z}. This set
is commonly referred to as 6Z.

(d) Let Y = {1}. Prove that π−1
6 (Y ) = {6k + 1|k ∈ Z}.

(e) What is π−1
6 ({0, 3}) equal to?

(2) Let A = N∪{0} = {0, 1, 2, 3, 4, 5, 6, 7, . . .}. Let f : A×A→ A
where f((m,n)) = m2 + n2.
(a) Calculate f(3, 5), f(1, 1), and f(2, 1).
(b) Let C = {(0, 0), (1, 10), (2, 5)}. Calculate f(C).
(c) Let B = {1, 2, 3, 4}. Find f−1(B).
(d) Show that f is not one-to-one.
(e) Show that f is not onto.

(3) Let f : R→ R where f(x) = x2 − 2.
(a) f−1([0, 1))
(b) f([0, 1])
(c) f−1([−3,−1))

(4) Suppose that X, Y,W,Z,A,B are sets. Let f : X → Y , W ⊆
X, Z ⊆ X, A ⊆ Y , and B ⊆ Y .
(a) Prove that f(W ∪ Z) = f(W ) ∪ f(Z).
(b) Prove that f−1(A ∪B) = f−1(A) ∪ f−1(B).
(c) Prove that X − f−1(A) ⊆ f−1(Y − A).
(d) Ptove that W ⊆ f−1(f(W )).

8.8.7. Exercises for section 8.7.

(1) Prove part 2 of Lemma 8.86.
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Figure 23. A picture of f(X) from Example 8.56
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Figure 24. A picture of f−1(Y ) from Example 8.58
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Figure 25. A right triangle
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Figure 26. Û consists of the rational points in the

first quadrant of the unit circle. We have drawn Û as a
solid curve even though there are holes at the irrational
points on the unit circle.
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Figure 27.
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Figure 28.
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Figure 29. A partial picture of the function g
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Figure 30. f−1 ◦ g : Q ∩ [0, 1]→ Φ
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m/n (f−1 ◦ g)(m/n) m/n (f−1 ◦ g)(m/n)
0 (1, 0, 1) 4/5 (9, 40, 41)

1/2 (3, 4, 5) 1/6 (35, 12, 37)
1/3 (4, 3, 5) 5/6 (11, 60, 61)
2/3 (5, 12, 13) 1/7 (24, 7, 25)
1/4 (15, 8, 17) 2/7 (45, 28, 53)
3/4 (7, 24, 25) 3/7 (20, 21, 29)
1/5 (12, 5, 13) 4/7 (33, 56, 65)
2/5 (21, 20, 29) 5/7 (12, 35, 37)
3/5 (8, 15, 17) 6/7 (13, 84, 85)

Figure 31. Table of some values of f−1 ◦ g.



Chapter 9
Cardinality

Infinity? That could take
forever!

Jason Andrew Scally,
Mastermind

9.1. Cardinality of a set

In this chapter we define one notion of the “size” of a set. Consider
the set A = {10, 5,−3, 4} and the set B = {−100, π, 1

2
, 7}. Do A and

B have the same size? You might think “Of course they do! They each
have four elements.” How did you figure that out? You counted the
number of elements of A and then you counted the number of elements
of B. Both times you got four. What if you couldn’t count? How could
you tell if two sets have the same size? One way to do this is to pair
the elements in the sets. That is, make a correspondence between the
two sets. See Figure 1. Since we are able to pair all of the elements of
A with all of the elements of B in a one-to-one way, we may conclude
that the two sets have the same size.

Now consider the sets C = {1, 4,−10} and D = {3, 10, 5, 1}. Do
these two sets have the same size? If we try to make a one-to-one
correspondence between the sets C and D we see that we cannot do it.
This is because we don’t have enough elements in C. See Figure 2 for
an attempt at making a correspondence.

How can we mathematically formulate a definition that embodies
the above ideas? Do we have a mathematical object that is the same
as a one-to-one correspondence between two sets? Yes! A bijection.

186
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Figure 1. A correspondence between A and B

The next definition makes this precise. Note that instead of saying
that A and B have the same “size” we say that A and B have the same
“cardinality.” This is because we will use this definition for infinite sets
too and the word “size” has too much association with finite sets.

Definition 9.1. Let A and B be sets. We say that A and B have
the same cardinality if there exists a bijection f : A → B. If this is
the case, then we write A ≈ B. Otherwise we write A 6≈ B.
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Figure 2. A failed attempt at a correspondence be-
tween C and D

Too Much Information 9.2. Suppose that f : A → B is a
bijection. Then f has a inverse function by ???? and f−1 : B → A is
a bijection. Thus, A ≈ B if and only if B ≈ A. So ≈ is well-defined;
that is, the order of the sets does not matter in Definition 9.1.

9.2. Finite sets
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Theorem 9.3. Let A be a finite set and f : A → A. Then f is
one-to-one if and only if f is onto.

Proof. put the easiest possible proof here. �

Examples from number theory

Let us give an application of Theorem 9.3.

Proposition 9.4. Let a ∈ Zn. Let f : Zn → Zn be defined by
f(k) = ak. If gcd(a, n) = 1, then f is one-to-one and onto.

Proof. We will prove that f is one-to-one. By Theorem 9.3, this
implies that f is onto. The main idea is to get an “inverse” for a. We
do this as follows.

By Theorem 4.63, since gcd(a, n) = 1 there exists integers x and y
where ax+ ny = 1. Therefore, by ?????? a · x+ n · y = 1. Since n = 0
we see that a · x = 1.

Now suppose that f(c) = f(d). Then a · c = a ·d. Multiplying both
sides by x gives that x ·a · c = x ·a ·d. Since a ·x = 1 we see that c = d.
Therefore, f is one-to-one. �

9.3. Countable sets

Infinite sets are rather strange objects. Let us begin with a journey
to Hilbert’s hotel.

One day, after much traveling, Tom arrived at a hotel. He was
very tired, so he was excited to find a hotel. As Tom got closer to the
hotel, he noticed some strange things. The hotel consisted of a hotel
office and what appeared to be an infinite number of hotel bungalos
numbered 1, 2, 3, 4, . . .. In fact, Tom could not see the end of the hotel
bungalos. And what was worse, Tom noticed that the hotel office had
the sign “no vacancies!” With so many hotel bungalos, Tom wondered
how there could possibly be no vacancies. So he decided to walk up to
the hotel office. As Tom approached the hotel office a man appeared.
“Good afternoon. My name is Professor Hilbert,” said Hilbert the ho-
tel manager, “would you like a room?” Tom replied “Yes, I would. But
I noticed that you have no vacancies.” Hilbert replied “that is true,
but I think something can be done. Please fill out these forms while
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Figure 3.

I prepare your room.” As Tom filled out the forms, he saw Hilbert
walk over to the telephone and push a button that said “broadcast to
all rooms.” Hilbert pushed the button, picked up the phone, and said
“Good afternoon hotel residents. I am sorry to disturb you. We must
make room for another hotel guest. If you would be so kind. Could
everyone please collect their belongings and in precisely ten minutes
step out of their hotel rooms and move to the hotel room that is one
number higher. Thank you for your understanding. A maid will be
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Figure 4.

in today to clean your rooms.” When Hilbert returned to the desk,
Tom said “Professor Hilbert, I don’t understand. If all your rooms are
occupied, how can there possibly be a room for me?” Professor Hilbert
replied “My dear gentleman, I have an infinite number of hotel bunga-
los. If each person moves one bungalo over, then bungalo number one
will be open and I can let you stay there for the evening.” Tom seemed
puzzled and replied “But what will happen to the person staying in
the last bungalo? Where will they go?” Hilbert replied “there is no
last bungalo. Just wait and see.” After ten minutes Tom saw every
bungalo door open and each person step out and move one bungalo
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over. Hilbert then handed Tom the key for bungalo number 1 and said
“Here you go Mr. Tom. Have a nice stay at my hotel.”

You might be thinking to yourself “What went on in the above
example?” Welcome to the land of infinite sets. We are going to notice
that strange things happen in this land. We begin with countable sets.

Talk about countable sets.
9.4. Uncountable sets

Talk about uncountable sets.
9.5. Cantor-Schroeder-Bernstein Theorem

Talk about this theorem.
9.6. Exercises

(1) Find a bijection f : N→ A where

A = {1, 1

3
,
1

9
,

1

27
,

1

81
, . . .}.

Prove that your answer is a bijection.
(2) Show that the set of odd integers O is countably infinite.
(3) Show that the set of even integers E is countably infinite.
(4) Find a bijection f : (−1, 3)→ (0, 4). This shows that (−1, 3) '

(0, 4).
(5) Let n ≥ 2. Let a ∈ Z. Prove that

a = {x | x ≡ a(mod n)}
is countably infinite.

(6) Suppose that A is countably infinite. Let x be some element
of A. Prove that A− {x} is countably infinite.

(7) Suppose that A and B are countably infinite. Show that A×B
is countably infinite. [Hint: Start with A = {a1, a2, a3, . . .} and
B = {a1, a2, a3, . . .}. Find a bijection f : N → A × B. Think
about Q.]

9.7. Fun math facts.

Talk about the continuum hypothesis.
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Chapter 10
Number Theory

10.1. Gaussian integers

Throughout this section let i denote the complex number where
i2 = −1.

Definition 10.1. The set

Z[i] = {a+ bi | a, bZ}
is called the set of Gaussian integers.

Given a+ bi and c+ di in Z[i]. Recall that

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)− (c+ di) = (a+ c)− (b+ d)i

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

a+ bi

c+ di
=

a+ bi

c+ di
· c− di
c− di

=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i

Definition 10.2. Let z = a + bi be a Gaussian integer. The
conjugate of z is z = a− bi. The norm of z is N(z) = zz = a2 + b2.
The absolute value of z is |z| =

√
a2 + b2.

Proposition 10.3. Let z, w ∈ Z[i]. Then

194
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(1) N(z) is a real number and N(z) ≥ 0.
(2) N(z) = 0 if and only if z = 0.
(3) N(zw) = N(z)N(w).

Proof. 〈Parts (1) and (2) follow from the definition of N(z) and
are left to the reader. We prove part (3)〉

Let z = a+ bi and w = c+ di where a, b, c, d ∈ Z.
Then

N(zw) = (ac− bd)2 + (ad+ bc)2

= a2c2 − 2acbd+ b2d2 + a2d2 + 2adbc+ b2c2

= (a2 + b2)(c2 + d2)

= N(z)N(w).

�

Example 10.4. Note that 2 = (1 + i)(1− i) and N(2) = 4, N(1 +
i) = 2, and N(1− i) = 2.

Definition 10.5. Let z ∈ Z[i]. We say that z is a unit if there
exists w ∈ Z[i] with zw = 1. That is, z is a unit if 1/z is a Gaussian
integer.

Example 10.6. i and −i are units since i · (−i) = 1. 1 and −1 are
units because 1 · 1 = 1 and (−1)(−1) = 1.

Proposition 10.7. Let z ∈ Z[i]. Then z is a unit if and only if
N(z) = 1. More specifically the units of Z[i] are 1, −1, i, and −i.

Proof. Suppose that the Gaussian integer z is unit.
Then there exists a Gaussian integer w with zw = 1.
By Proposition 10.3, N(z)N(w) = 1.
Thus N(z) = 1 since N(z) is a non-negative integer.

Conversely, suppose that z = a + bi is a Guassian integer with
N(z) = 1.
Therefore a2 + b2 = 1.
Thus (a, b) = (±1, 0) or (a, b) = (0,±1).



10.2. DIVISION AND PRIMES 196

We conclude that z must be one of 1, −1, i, or −i.
Each of the above elements are units in Z[i] by Example 10.6. �

10.2. Division and primes

Definition 10.8. Let z, w ∈ Z[i]. We say that z divides w if there
exists u ∈ Z[i] with zu = w. If z divides w then we say that z is a
divisor of w and we write z|w.

Example 10.9. 1 + i divides 2 since 2 = (1 + i)(1− i).

Example 10.10. In this example, we find all the divisors of 3. Note
that 3 = (1) · (3), 3 = (−1) · (3), 3 = (i) · (−3i), and 3 = (−i) · (3i) are
several factorizations of 3 into Gaussian integers. Hence 1, −1, i, −i,
3, −3, 3i, and −3i are divisors of 3. We now show that these are the
only divisors of 3.

Suppose that 3 = zw with z, w ∈ Z[i]. Therefore 9 = N(z)N(w).
Thus N(z) is 1, 3, or 9 because N(z) is a non-negative integer. Let
z = a + bi. If N(z) = 1, then z is one of 1, −1, i, or −i. Note
that N(z) = 3 has no solutions since a2 + b2 = 3 has no solutions
with a, b ∈ Z. If N(z) = 9, then a2 + b2 = 9. So (a, b) = (±3, 0) or
(a, b) = (0,±3). Hence z is one of 3, −3, 3i, or −3i.

Definition 10.11. Let z ∈ Z[i]. The elements z, −z, iz, and −iz
are called the associates of z.

Example 10.12. Let z ∈ Z[i]. Note that z = 1 · z, z = (−1) · (−z),
z = i · (−iz), and z = (−i) · (iz). Hence, 1, −1, i, −i, z, −z, iz, and
−iz are divisors of z. Therefore, the units of Z[i] and the associates of
z are divisors of z for any Gaussian integer z.

Definition 10.13. Let z ∈ Z[i]. We say that z is prime in Z[i] if
z is not a unit and the only divisors of z are the units of Z[i] and the
associates of z.

Example 10.14. By Example 10.10, the only divisors of 3 are the
units of Z[i] and the associates of 3. Hence 3 is prime in Z[i].
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Example 10.15. 2 is not prime since 2 = (1 + i)(1 − i). 5 is not
prime since 5 = (2 + i)(2− i).

Example 10.16. In this example, we show that 1 + i is prime.
Suppose that z = a+ bi ∈ Z[i] divides 1 + i. Then there exists w ∈ Z[i]
with 1+i = zw. Hence 2 = N(1+i) = N(z)N(w). Therefore N(z) = 1
or N(z) = 2. If N(z) = 1 then by Proposition 10.7 we have that z is
a unit. If N(z) = 2, then a2 + b2 = 2. Hence (a, b) = (±1,±1). So, z
is one of 1 + i, 1− i = −i(1 + i), −1 + i = i(1 + i), −1− i = −(1 + i)
which are the associates of 1 + i. Therefore 1 + i is prime. By exercise
2 , we have that 1− i is also prime.

Proposition 10.17 (Division Algorithm for the Gaussian Inte-
gers). Let z, w ∈ Z[i] with w 6= 0, then there exist q, r ∈ Z[i] with
z = wq + r and 0 ≤ N(r) < N(w).

Proof. Let z = a+ bi and w = c+ di where a, b, c, d ∈ Z.

Let A =
ac+ bd

c2 + d2
and B =

bc− ad
c2 + d2

.

Then z/w = A+Bi.
Note that A and B are rational numbers.
Choose integers α and β that are as close to A and B as possible.
That is, let α, β ∈ Z where |A− α| ≤ 1/2 and |B − β| ≤ 1/2.
Let q = α + βi and r = z − wq.
Therefore z = wq + r.
In addition, we have that

|r| = |z − wq| = |z − w(α + βi)| = |w|
∣∣∣ z
w
− (α + βi)

∣∣∣
= |w||(A− α) + i(B − β)| = |w|

√
(A− α)2 + (B − β)2

≤ |w|

√(
1

2

)2

+

(
1

2

)2

=
|w|√

2
< |w|.

Hence, N(r) = |r|2 < |w|2 = N(w). �

Example 10.18. This example will illustrate the procedure out-
lined in the proof of Proposition 10.17. Let z = 10+2i and w = 2−3i.
Then z/w = (14/13) + (34/13)i. Let A = 14/13 and B = 34/13.
Choose α = 1 and β = 3. Let q = α + βi = 1 + 3i and r = z − wq =
(10 + 2i)− (2− 3i)(1 + 3i) = −1− i. Note that N(r) = 2 < 13 = N(w)
and z = (2− 3i)(1 + 3i) + (−1− i).
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Proposition 10.19. Let z ∈ Z[i] be prime and let v, w ∈ Z[i]. If
z|vw, then z|v or z|w.

Proof. If z divides v then we are done.
For the remainder of the proof we assume that z does not divide v.
〈We begin by showing that z divides w.〉
By Proposition 10.17 there exist q, r ∈ Z[i] with

v = zq + r and 0 ≤ N(r) < N(z).

Note that r 6= 0 since z does not divide v.
Hence, by Proposition 10.3, we must have that N(r) 6= 0.
Therefore, 0 < N(r) < N(z).
Let S = {az + bv | a, b ∈ Z[i]} consist of all linear combinations of z
and v.
Note that r = (−q) · z + 1 · v ∈ S and N(r) > 0.
Hence S has an element of positive norm.
Let d be an element of S of minimum positive norm.
Suppose that d = a0z + b0v where ao, b0 ∈ Z[i].
Then N(d) ≤ N(r) < N(z) by the definition of d and the fact that
r ∈ S.
〈We now show that d divides z.〉
Dividing d into z gives

z = dq′ + r′ and 0 ≤ N(r′) < N(d)

where q′, r′ ∈ Z[i].
Note that

r′ = z − q′d = z − q′((−q)z + v) = (1 + q′q)z − q′v ∈ S.
This implies that N(r′) = 0 since otherwise r′ would be an element
of S with smaller positive norm than d, which is impossible by the
definition of d.
Therefore, r′ = 0 by Proposition 10.3.
Therefore, z = dq′.
〈We now show that d is a unit.〉
Since z is a prime and z = dq′ then either d is a unit or q′ is a unit.
If q′ is a unit then by Proposition 10.7 we would have

N(z) = N(d)N(q′) = N(d) · 1 = N(d)

which cannot happen since N(d) < N(z).
Therefore q′ is not a unit and so d must be a unit.
〈We now show that w is a linear combination of z and v and use this
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fact to show that z divides w.〉
Since d is a unit in Z[i] we know that d−1 = 1/d ∈ Z[i].
Multiplying d = a0z + b0v by wd−1 we get that w = (d−1a0w)z +
(d−1b0w)v.
Since z divides vw by assumption we have that zk = vw for some
k ∈ Z[i].
Hence w = (d−1a0w)z + (d−1b0k)z = (d−1a0w + d−1b0k)z.
Therefore z divides w. �

10.3. Integers modulo a prime

Recall that addition and multiplication given by

a+ b = a+ b and a · b = ab

are well-defined in Zn = {0, 1, . . . , n− 1} by Proposition 7.27.

Too Much Information 10.20. By Proposition 7.15(3) and Ex-
ample 7.16 we have that a = b iff a ≡ b(mod n). For example, in Z5

we have that 3 = 8 since 3 ≡ 8(mod 5). We make frequent use of this
fact in this section and go back and forth between equations in Zn and
equations modulo n.

Definition 10.21. Let p be a prime. Define Z×p = {1, 2, . . . , p− 1}.

Lemma 10.22. Let p be an odd prime. Let a ∈ Z×p . Then there

exists a unique b ∈ Z×p with a · b = 1.

Proof. 〈We first prove existence〉
We may assume that 1 ≤ a ≤ p− 1 since a ∈ Z×p .
Thus gcd(a, p) = 1.
There exist b, c ∈ Z with ab+ pc = 1 by Theorem 4.63.
Therefore ab+ pc = 1.
Hence a · b+ p · c = 1 by Definition 7.24.
Thus a · b = 1 since p = 0.
〈We now prove uniqueness.〉

Suppose that a · b1 = 1 and a · b2 = 1 where b1, b2 ∈ Z×p .

Then a · b1 = a · b2.
Multiplying on the left by b1 we get that b1 · a · b1 = b1 · a · b2.
Therefore b1 = b2 since b1 · a = 1. �
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Definition 10.23. We say that x, y ∈ Z×p are inverses if x ·y = 1.

If x and y are inverses then we write x −1 = y.

Example 10.24. Consider

Z×13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
Notice that 2 ·7 = 14 = 1, 3 ·9 = 27 = 1, 4 ·10 = 40 = 1, 5 ·8 = 40 = 1,
6 · 11 = 66 = 1, and 12 · 12 = 144 = 1.

Therefore, 2
−1

= 7, 3
−1

= 9, 4
−1

= 10, 5
−1

= 8, 6
−1

= 11, and

12
−1

= 12.

Lemma 10.25. Let p be a prime. If x ∈ Z×p and x2 = 1, then x = 1

or x = −1 = p− 1. That is, the only elements of Z×p that are their

own inverses are the elements 1 and p− 1 = −1.

Proof. Suppose that x2 = 1.
Then x2 ≡ 1(mod p).
So p divides x2 − 1 = (x− 1)(x+ 1).
Therefore p divides x− 1 or p divides x+ 1 by Theorem 4.67.
Hence x ≡ 1(mod p) or x ≡ −1(mod p).
Therefore x = 1 or x = −1 = p− 1. �

Example 10.26. In this example we illustrate the proof of Propo-
sition 10.27 using p = 13. Consider

Z×13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
By Example 10.24 we have that

12! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12

= 1 · 2 · 7 · 3 · 9 · 4 · 10 · 5 · 8 · 6 · 11 · 12

= 1 · 1 · 1 · 1 · 1 · 1 · 12

= 12

= −1.

Proposition 10.27 (Wilson’s Theorem). Let p be a prime, then

(p− 1)! = −1 in Z×p .
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Proof. If p = 2 then the result is true.
We now assume that p is odd.
Let x ∈ Z×p with 2 ≤ x ≤ p− 2.
By Lemmas 10.22 and 10.25 there exits a unique inverse y ∈ Z×p with

2 ≤ y ≤ p− 2 and x · y = 1 in Z×p .

Note that x 6= y since then we would have x2 = 1 which can’t happen
by Lemma 10.25 since 2 ≤ x ≤ p− 2.
Therefore, by pairing elements in the following product with their
unique inverses we get that

(p− 1)! ≡ 1 · 2 · 3 · · · (p− 2) · (p− 1)

≡ 1 · (1)(p−2)/2 · (p− 1)

≡ −1.

�

Example 10.28. In Proposition 10.29 we will show that if p is an
odd prime with p ≡ 1(mod 4) then there exists an element x ∈ Z×p
with x2 = −1. In this example we illustrate the proof of Proposition
10.29 using p = 13 ≡ 1(mod 4).

Let x = 1 · 2 · 3 · 4 · 5 · 6 in Z×13. Note that there are an even number
of terms in the product for x. Hence x = −1 ·−2 ·−3 ·−4 ·−5 ·−6 since
the minus signs cancel each other. Note that 13− k = 13 +−k = −k
for any integer k. Hence by Proposition 10.27 we have that

x2 = 1 · 2 · 3 · 4 · 5 · 6 · −1 · −2 · −3 · −4 · −5 · −6

= 1 · 2 · 3 · 4 · 5 · 6 · 13− 1 · 13− 2 · 13− 3 · 13− 4 · 13− 5 · 13− 6

= 1 · 2 · 3 · 4 · 5 · 6 · 12 · 11 · 10 · 9 · 8 · 7
= (13− 1)!

= −1.

Proposition 10.29. Let p be an odd prime with p ≡ 1(mod 4).
There exists an element x ∈ Z×p with x2 = −1.

Proof. 〈The reader may wish to read through Example 10.28 be-
fore reading this proof.〉
We have that p− 1 = 4n for some integer n since p ≡ 1(mod 4).
Let

x = 1 · 2 · 3 · · · (p− 1)/2.
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Note that there are an even number of terms in the product for x since
(p− 1)/2 = 2n is even.
This gives us that

x = −1 · −2 · −3 · · · −(p− 1)/2.

since the minus signs cancel each other out.
Note that p− k = p+−k = −k for every integer k.
Hence by Proposition 10.27

x2 = 1 · 2 · 3 · · · (p− 1)/2 · −1 · −2 · −3 · · · −(p− 1)/2

= 1 · 2 · 3 · · · (p− 1)/2 · p− 1 · p− 2 · p− 3 · · · p− (p− 1)/2

= 1 · 2 · 3 · · · (p− 1)/2 · (p+ 1)/2 · · · p− 3 · p− 2 · p− 1

= (p− 1)!

= −1.

�

10.4. Sums of squares

Let p be an odd prime. Then by Exercise 5, either p ≡ 1(mod 4)
or p ≡ 3(mod 4). In this section we show that p = x2 + y2 for integers
x and y if and only if p ≡ 1(mod 4).

Definition 10.30. We say that an integer n is the sum of two
squares if there exist integers x and y with n = x2 + y2. Otherwise
we say that n is not the sum of two squares.

Proposition 10.31. Let p be an odd prime and suppose that p ≡
3(mod 4). Then p is not the sum of two squares.

Proof. Let a be an integer.
By Table 1 we have that a2 = 0 or a2 = 1 in Z4.
Therefore, by Table 2, if x and y are integers, then x2 + y2 6= 3 in Z4.
Hence there do not exist integers x and y with p = x2 + y2 since p = 3
in Z4. �

Proposition 10.32. Let p be an odd prime and suppose that p ≡
1(mod 4). Then p is the sum of two squares.
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a in Z4 a2 in Z4

0 0
1 1
2 0
3 1

Table 1. Squares modulo four

x2 in Z4 y2 in Z4 (x2 + y2) in Z4

0 0 0
0 1 1
1 0 1
1 1 2

Table 2. Sums of squares modulo four

Proof. 〈We begin by showing that p factors in Z[i].〉
By Proposition 10.29 there exists an integer x where x2 ≡ −1(mod p).
Therefore x2 + 1 = pk for some integer k.
Factoring the above equation in Z[i] we have that pk = (x+ i)(x− i).
If p were prime in Z[i], then by Proposition 10.19, we would have that
either p divides x+ i or p divides x− i.
Let c+ di ∈ Z[i].
Note that p(c+ di) = pc+ pdi 6= x+ i and p(c+ di) = pc+ pdi 6= x− i,
since pd 6= ±1.
Hence p does not divide x+ i and p does not divide x− i.
Therefore p is not prime in Z[i].
Hence p = zw where z, w ∈ Z[i] and neither z nor w is a unit.
〈We now use the above factorization of p to show that p is the sum of
two squares.〉
Thus p2 = N(p) = N(z)N(w).
By Proposition 10.7 we must have that N(z) = N(w) = p since neither
z nor w is a unit.
Let z = a+ bi where a and b are integers.
Then p = N(z) = a2 + b2.
Therefore p is the sum of two squares. �
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10.5. Exercises

(1) Let z, w ∈ Z[i]. Prove that w divides z if and only if w divides
z.

(2) Let z ∈ Z[i]. Prove that z is prime if and only if z is prime.
[Hint: Use exercise 1.]

(3) Let z ∈ Z[i]. Prove that if N(z) is a prime in Z, then z is
prime in Z[i].

(4) Let w, y, z ∈ Z[i]. Prove that if w is a unit and wz divides y,
then z divides y.

(5) Let p be an odd prime in Z. Prove that either p ≡ 1(mod 4)
or p ≡ 3(mod 4).



Chapter 11
Real Analysis

11.1. Supremum of a set

Definition 11.1. Let S ⊂ R. We say that x ∈ R is an upper
bound for S if y ≤ x for all y ∈ S. That is, x is an upper bound for
S if x is bigger than every element of S.

If S has an upper bound then we say that S is bounded from
above.

Example 11.2. Let S be the interval (−7.25,−1.5) ∪ (0, 3]. See
Figure 1.

Then 4 is an upper bound of S since x ≤ 4 for every x in S.
Therefore S is bounded from above. Note that 3 and 5 are also upper
bounds for S.

Definition 11.3. Suppose that S is bounded from above and that
x is an upper bound for S. We say that x is a least upper bound
or supremum of S if x ≤ x′ for every upper bound x′ of S. If x is a
supremum for S then we write x = sup(X).

Example 11.4. Let S be the interval (−7.25,−1.5) ∪ (0, 3] be as
in Example 11.2. See Figure 1.

The least upper bound for S is exactly what you think it is. It is
the smallest number that is an upper bound for S. In this example,

205
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Figure 1. S = (−7.25,−1.5) ∪ (0, 3]

is 4 the least upper bound for S? No, because 3.5 is a smaller upper
bound for S. 3.12 is an even smaller upper bound for S. It is clear
that 3 is the “least upper bound” from the picture of S. Let’s show
this with a short algebraic proof:

3 is an upper bound for S since y ≤ 3 for every y ∈ S.
Suppose that x′ is another upper bound for S.
Then 3 ≤ x′ since 3 ∈ S.
Hence 3 is less than or equal to any other upper bound for S.
Hence 3 = sup(S).
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If you recall, the real numbers are the number system that satisfies
Assumption 4.4. That is, the real numbers are *defined* to be “the”
set that satisfies all of the properties given in Assumption 4.4. (We
put “the” in quotes because there are actually many sets that satisfy
the properties given in Assumption 4.4, however all of those sets are
basically the same in some way. One of these sets is given in Chapter
?????)

The most important axiom that we will use for the real numbers is
the completeness axiom. This is Axiom 17 from Assumption 4.4, which
is repeated below for your convenience.

Assumption 11.5 (The completeness axiom for R). Let S ⊆ R
that is bounded from above. Then there exists a supremum for S.

Too Much Information 11.6. Let S be a subset of R that is
bounded from above. By the completeness axiom for R we know that
a supremum for S exists. By exercise 1 we know that the supremum is
unique. Hence the definition of supremum is well-defined.

Proposition 11.7. Let S be a non-empty subset of R that is
bounded from above by an element x ∈ R. Then x = sup(S) if and
only if for every ε > 0 there exists y ∈ S with x− ε < y ≤ x

Proof. Let ε > 0 be a real number.

Suppose that x = sup(S).
Note that x− ε is not an upper bound for S because x− ε < x and x
is the least upper bound for S.
Therefore, there exists an element of y ∈ S with x− ε < y ≤ x.

Conversely, suppose that for every ε > 0 there exists y ∈ S with
x− ε < y ≤ x.
Suppose that x′ is an upper bound for S.
〈Let’s show that x ≤ x′, which will show that x = sup(S). We show
this via contradiction.〉
Suppose that x′ < x.
〈See Figure 2 for an illustration of the rest of this proof.〉
Let ε = (x− x′)/2.
By our hypothesis on x, there exists y ∈ S with x− ε < y < x.
Note that

x− ε = x− (x− x′)/2 = x/2 + x′/2 > x′/2 + x′/2 = x′
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Figure 2. Illustration of the proof of Proposition 11.7
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since x > x′.
Therefore x′ < x− ε < y.
This shows that x′ is not an upper bound for S.
We conclude that x′ ≥ x. �

Example 11.8. Let

S =

{
1− 1

n

∣∣∣∣ n = 1, 2, 3, 4, . . .

}
=

{
0,

1

2
,
2

3
,
3

4
,
4

5
, . . .

}
.

In this example we use Proposition 11.7 to show that 1 = sup(S). Let
ε > 0. Choose an integer n with n > 1/ε. Let y = 1−1/n. Then y ∈ S
and 1− ε < y < 1. Hence y = sup(S). See Figure 3.

11.2. Limits

Definition 11.9. A sequence of real numbers is an ordered list
of real numbers indexed by the natural numbers. If an is the nth term
of a sequence then one writes (an)∞n=1 or (an) to denote the sequence.

Example 11.10. Consider the sequence given by

(
1

n

)∞
n=1

. The

first term of the sequence is 1/1 = 1. The second term of the sequence
is 1/2. The third term of the sequence is 1/3. The 100th term of the
sequence is 1/100.

Too Much Information 11.11. Consider Definition 11.9. What
is an “ordered list of real numbers?” To make the definition of a se-
quence more precise one needs to use functions. One can define a
sequence as a function f : N → R. The nth term of the sequence is
an = f(n). For example, one can define the sequence in Example 11.10
as the function f : N→ R where f(n) = 1/n.

Too Much Information 11.12. Analysis loves absolute values.
The absolute value function allows us to measure the distance between
two points. From now on whenever you see |a− b| you should think of
it as the distance between a and b. Everytime. For example, |3 − 10|
gives the distance between 3 and 10. Or |f(x)− L| gives the distance
between the two numbers f(x) and L.

Example 11.13. Consider the sequence given in Example 11.10.
As n gets larger and larger, an = 1/n gets closer and closer to 0. For
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Figure 3. Illustration of Example 11.8
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Figure 4. Illustration of Example 11.10

example, if n ≥ 1, 000, then |an − 0| = 1/n ≤ 0.001. That is, after the
1000th term, every element in the sequence is within 0.001 of 0. Or
if n ≥ 1, 000, 000, then |an − 0| = 1/n ≤ 0.000001. That is, after the
1, 000, 000th term, every element of the sequence is within 0.000001 of
0. This is what we mean by “an gets closer and closer to 0 as n gets
larger and larger.” The reader may recall from Calculus that the limit
of the sequence an = 1/n is 0. We make the definition of limit precise
in Definition 11.14.

Definition 11.14. Let (an)∞n=1 be a sequence of real numbers. We
say that

lim
n→∞

an = L

if for every ε > 0 there exists an integer N > 0 with |an − L| < ε for
all n > N .

If such an L exists, then we say that (an)∞n=1 converges to L.
Otherwise we say that (an)∞n=1 does not converge.

Example 11.15. Recall Examples 11.10 and 11.13. We now show
that limn→∞ 1/n = 0.

Proof. Let ε > 0.
Choose an integer N with N > 1/ε.
If n > N , then |1/n− 0| = 1/n < 1/N < ε.
Hence limn→∞ 1/n = 0. �



11. REAL ANALYSIS 212

Figure 5. Illustration of Definition 11.14

Too Much Information 11.16. By Exercise 3, we have that
Definition 11.14 is well-defined, that is limits are unique.

Example 11.17. Let c be a fixed real number. Then limn→∞ c = c.
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Proof. Let ε > 0.
Pick N = 1.
If n > N , then |c− c| = 0 < ε. �

Example 11.18. ((−1)n)∞n=1 does not converge.

Proof. Suppose that limn→∞(−1)n = L for some real number L.
〈We break the proof into cases.〉
Suppose that L is a real number with L = 1.
Let ε = 1.
Suppose that N is any positive integer.
Then there is an odd positive integer n0 with n0 > N .
Then |(−1)n0 − L| = | − 1− 1| = 2 > ε.
Hence L = 1 is not a limit for the sequence ((−1)n)∞n=1.

Now suppose that L is a real number with L 6= 1.
Let ε = |L− 1|/2.
Let N be any positive integer.
Then there is an even positive integer n0 with n0 > N .
And |(−1)n0 − L| = |1− L| = |L− 1| > |L− 1|/2 = ε.
Hence L is not a limit for the sequence ((−1)n)∞n=1.

We have shown that the sequence ((−1)n)∞n=1 does not converge. �

Example 11.19 (Geometric sequence). Let x be a real number with
−1 ≤ x ≤ 1. Consider the sequence (xn)∞n=1. Then limn→∞ x

n = 0.

Proof. If x = 0, then limn→∞ x
n = limn→∞ 0 = 0 by Example

11.17.
Suppose for the remainder of the proof that |x| < 1 but x 6= 0.
Let ε > 0.
Suppose that ε < 1.
〈Note that the restriction that ε < 1 is okay. For suppose that ε < ε′.
If we show that |xn − 0| < ε, then we have shown that |xn − 0| < ε′.〉
Let N be a positive integer with N > log(ε)/ log(|x|).
Note that log(ε) and log(|x|) are both negative.
Therefore N log(|x|) < log(ε).
And so log(|x|N) < log(ε).
It follows that |x|N < ε.
Suppose that n is an integer with n > N .
Then |x− 0|n = |x|n < |x|N < ε since |x| < 1.
Hence limn→∞ x

n = 0. �
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Proposition 11.20. Let (an) and (bn) be convergent sequences with
lim an = La and lim bn = Lb. Let c be any real number. Then

(1) lim can = cLa.
(2) lim(an + bn) = La + Lb.
(3) lim(an − bn) = La − Lb.

Proof. (1) If c = 0, then lim can = lim 0 = 0 by Example 11.17.
Suppose that c 6= 0.
Let epsilon > 0.
Since lim an = La we know that there exists N > 0 where |an − La| <
ε/|c| for all n > N .
Therefore if n > N then

|can − cLa| = |c||an − La| < |c|(ε/|c|) = ε.

Hence lim can = cLa.
(2) Let ε > 0.

Since lim an = La we know that there exists Na > 0 where |an −La| <
ε/2 for all n > Na.
Since lim bn = Lb we know that there existsNb > 0 where |bn−Lb| < ε/2
for all n > Nb.
Let N be the maximum of Na and Nb.
Then if n > N we have that

|(an + bn)− (La + Lb)| = |(an − La) + (bn − Lb)|
≤ |(an − La)|+ |(bn − Lb)|
< ε/2 + ε/2 = ε

by the triangle inequality ?????????????????? put a reference here
?????????????.
Hence lim(an + bn) = La + Lb.

(3) By part (1) we have that − lim bn = lim(−bn).
Hence by part (2) we have that

lim(an−bn) = lim(an+(−bn)) = lim an+lim(−bn) = lim an−lim bn = La−Lb.
�

Lemma 11.21. Let (an) and (bn) be convergent sequences with
lim an = La and lim bn = Lb. If an < bn for all n, then La ≤ Lb.
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Proof. 〈We give a proof by contradiction.〉
Suppose that La > Lb.
Let ε = (La − Lb)/2.
There exists N such that |aN − La| < ε because (an) converges to La.
There exists M such that |bM − Lb| < ε because (bn) converges to Lb.
Then bM < Lb + ε = La − ε < aN .
This is a contradiction.
Hence La ≤ Lb. �

11.3. Infinite Sums

Definition 11.22. Consider a sequence (an). The N-th partial
sum of (an) is

sN = a0 + a1 + · · · aN .

We say that the infinite sum or series
∞∑
n=0

an converges to L, and

we write
∞∑
n=0

an = L, if L = lim
N→∞

sN . If lim
N→∞

sN does not exist then we

say that the series
∞∑
n=0

an diverges.

Example 11.23. Let x be a real number with |x| < 1. Then
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · = 1

1− x
.

Proof. By Example 5.3 we have that

sN = 1 + x+ x2 + x3 + · · ·+ xN =
xN+1 − 1

x− 1
.

If |x| < 1 then by Example 11.17, Example 11.19, and Proposition
11.20 we have that

lim
N→∞

xN+1 − 1

x− 1
=

1

x− 1
( lim
N→∞

xN+1 − lim
N→∞

1) =
1

x− 1
(0− 1) =

1

1− x
.

�

Example 11.24. By Example 11.23 we have that
∞∑
n=0

(
1

2

)n
=

1

1− 1/2
= 2.
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Proposition 11.25. Suppose that the infinite sums
∑
an and

∑
bn

converge. Let c be a real number. Then

(1)
∑

(an + bn) =
∑
an +

∑
bn

(2)
∑

(can) = c
∑
an

(3) If an < bn for all n, then
∑
an < bn

(4) If an > 0 for all n, then
∑
an > 0.

Proof. Let sN and s′N be the N -th partial sums of
∑
an and

∑
bn

respectively.
(1) The N -th partial sum of

∑
(an + bn) is sN + s′N .

Hence by Proposition 11.20 we have that∑
(an + bn) = lim

N→∞
(sN + s′N) = lim

N→∞
sN + lim

N→∞
s′N =

∑
an +

∑
bn.

(2) The N -th partial sum of
∑

(can) is csN .
Hence by Proposition 11.20 we have that∑

(can) = lim
N→∞

(csN) = c lim
N→∞

sN = c
∑

an.

(3) We have that sN < s′N for all N since an < bn for all n.
Also, sN − a0 < s′N − b0 for all N > 0.
Hence, by Proposition 11.20 we have that∑

an = lim sN = lim sN − a0 + a0 = lim(sN − a0) + a0

≤ lim(s′N − b0) + a0 < lim(s′N − b0) + b0 = lim s′N − b0 + b0

= lim s′N =
∑

bn.

(4) We have that sN > 0 for all N since an > 0 for all n.
Also, sN − a0 > 0 for all N > 0.
Hence by Proposition 11.20 we have that∑

an = lim sN = lim sN − a0 + a0

= lim(sN − a0) + a0 ≥ 0 + a0 > 0.

�

11.4. Bounded monotone convergence theorem
and the irrationality of e
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Definition 11.26. A sequence (an) is called monotone increas-
ing if an ≤ an+1 for all n.

Theorem 11.27 (Bounded monotone convergence theorem). Let
(an) be a monotone increasing sequence that is bounded above. Then
(an) converges to L = sup(S) where S = {an | n = 1, 2, 3, . . .}.

Proof. Note that L = sup(S) exists by the Completeness axiom
(Assumption 11.5).
Let ε > 0.
By Proposition 11.7, there exists aN with L− ε < aN ≤ L.
Since (an) is monotone increasing and L = sup(S) we have that L−ε <
aN ≤ ak ≤ L for all k ≥ N .
Hence |ak − L| < ε for all k ≥ N .
Therefore lim

k→∞
ak = L. �

Too Much Information 11.28. The real number line has a spe-
cial property that the rational numbers don’t have. It has no “holes.”
Think about the following. Consider the set of rational numbers Q.
By Theoerem 4.53 we know that

√
2 is not in Q. That is, there is a

whole in the rational numbers. Indeed, let A = {r ∈ Q | r ≤
√

2}
and B = {r ∈ Q |

√
2 ≤ r}. Then Q = A ∪ B. In addition there is a

number that sits between A and B and is not a rational number. It is√
2. Of course there are rational numbers that get closer and closer to√
2, but they never quite get there. Here are some of them: 1.41 = 141

100
,

1.414 = 1414
1000

, 1.4142 = 14142
10000

,· · ·
The real numbers don’t have this problem. The bounded montone

convergence theorem (Theorem 11.27) guarantees this fact. For sup-
pose (xn) is a sequence of increasing

The completeness axiom takes care of this. In the list of numbers
above we had a sequence of rational numbers that were getting bigger
and bigger and were getting closer and closer to

√
2. This can’t happen

in the real number system. The Bounded monotone convergence the-
orem (Theorem 11.27) guarantees that if you have a list of increasing
real numbers that get closer to and closer to a number x, then x has
to be real. You don’t have any “holes” in the real number system.
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Corollary 11.29. The infinite sum
∑∞

n=0
1
n!

converges.

Proof. Let sN =
∑N

n=0
1
n!

.
〈We begin by showing that (sN) is a bounded sequence.〉
Note that 1 · 2 · 3 · · · k ≥ 2k−1 for all integers k ≥ 1.
Hence 1

k!
≤ 1

2k−1 for all integers k ≥ 1.
We have that

sN =
1

0!
+

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

N !

≤ 1 +
1

20
+

1

21
+

1

22
+ · · ·+ 1

2N−1

= 1 +
1− 1

2

N

1− 1
2

≤ 1 +
1

1− 1
2

= 3.

Therefore, (sN) is a bounded sequence.
〈We now show that (sN) is monotone.〉
Note that sN+1 = sN + 1

(N+1)!
> sN .

Hence (sN) is a monotone sequence.
By Theorem 11.27, we have that (sN) converges. �

Definition 11.30. We define the number e to be equal to the
infinite sum

∑∞
n=0

1
n!

.

Example 11.31. e is irrational.

Proof. 〈We give a proof by contradition.〉
Suppose that e = a/b where a, b ∈ Z and a > 0 and b > 0.

Let x = b!

(
e−

b∑
n=0

1

n!

)
.

Note that

x = b!

(
a

b
−

b∑
n=0

1

n!

)
= a(b− 1)!−

b∑
n=0

b!

n!
.
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We see that x is an integer since b!/n! is an integer for every 0 ≤ n ≤ b.
We now show that 0 < x < 1 which will be a contradiction.
By Proposition 11.25 we have that

x = b!

(
∞∑
n=0

1

n!
−

b∑
n=0

1

n!

)
=

∞∑
n=b+1

b!

n!
> 0.

So x > 0.
If n ≥ b+ 2, then

b!

n!
=

b(b− 1) · · · (2)(1)

n(n− 1) · · · (b+ 1)(b)(b− 1) · · · (2)(1)

=
1

(b+ 1)(b+ 2)(b+ 3) · · · (n− 1)(n)

=
1

(b+ 1)(b+ 2)(b+ 3) · · · (b+ (n− (b+ 1)))(b+ (n− b))

<
1

(b+ 1)n−b
.

By Proposition 11.25 and Example 11.23 we have that

x =
∞∑

n=b+1

b!

n!
<

∞∑
n=b+1

1

(b+ 1)n−b

=
∞∑
k=1

1

(b+ 1)k
=

1

b+ 1

∞∑
k=0

1

(b+ 1)k

=
1

b+ 1

(
1

1− 1
b+1

)
=

1

b

≤ 1.

Therefore x < 1.
We have reached a contradiction since x is an integer and 0 < x < 1.
Therefore e is not rational. �

11.5. Exercises

(1) Let S ⊆ R. Suppose that S is bounded from above. Prove
that the supremum of S is unique.

(2) In this exercise we show that the set of rational numbers Q
does not have the completeness property. Let

S = {x ∈ Q | x2 < 2}.
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(a) Find a rational number that is an upper bound for S.
This shows that S is bounded above in Q.

(b) Suppose that s = sup(S) where s is a rational number.
Show that both s <

√
2 and s >

√
2 are false. This will

yield a contradiction since
√

2 is not rational. [Hint: If
s <
√

2 then s + 1/K <
√

2 for every natural number K
with 1/K <

√
2 − s. If s >

√
2 then s − 1/M >

√
2 for

every natural number M with 1/M < s−
√

2.]
(3) Let (an) be a convergent sequence. Suppose that lim an = L

and lim an = L′. Prove that L = L′.
(4) Suppose that (an) is a convergent sequence. Prove that (an)

is bounded. That is, prove that there exists a real number
M > 0 such that |an| ≤M for all n.



Chapter 12
Group Theory

12.1. Definition of a group

Definition 12.1. A group is a set G with a binary operation ∗
defined on G such that the following statements are true:

(1) (closure) If a, b ∈ G, then a ∗ b ∈ G.
(2) (associativity) If a, b, c ∈ G, then (a ∗ b) ∗ c = a ∗ (b ∗ c).
(3) (identity) There exists e ∈ G satisfying e ∗a = a ∗ e = a for all

a ∈ G. The element e is called an identity element for G.
(4) (inverses) For each a ∈ G there exists b ∈ G with a∗b = b∗a =

e. The element b is called an inverse for a.

Example 12.2. We now show that the set of integers Z is a group
under the binary operation +. Let us check the four requirements of
Definition 12.1.

(1) Let a, b ∈ Z. Then by assumption ??? we have that a+ b ∈ Z.
(2) Let a, b, c ∈ Z. Then by assumption ??? we have that (a +

b) + c = a+ (b+ c).
(3) Let e = 0.

Then 0 + a = a+ 0 = a for every a ∈ Z.
Hence 0 is an identity element for Z under addition.

(4) Let a ∈ Z.
Let b = −a.
Then b ∈ Z and a+ b = 0 = b+ a.
Hence b = −a is an inverse for a.

221
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Example 12.3. Consider the set of rational numbers Q. We now
show that Q is not a group under multiplication.

Consider Definition 12.1(3). The only element e ∈ Q with e · a =
a · e = a for all a ∈ Q is e = 1. Thus the only identity element for Q
under multiplication is e = 1.

Now let a = 0 and e = 1 in part (4). Note that 0 · b = b · 0 = 1 has
no solutions. That is, 0 has no inverse under multiplication. Hence (4)
is not true for Q under multiplication.

Example 12.4. We now show that the set of non-zero rational
numbers Q∗ = Q \ {0} is a group under multiplication. Let us check
the four requirements of Definition 12.1.

(1) Let a, b ∈ Q∗.
Then a = m/n and b = s/t where m,n, s, t ∈ Q and m 6= 0
and s 6= 0.
Hence ab = ms/nt ∈ Q∗ since ms 6= 0.

(2) Let a, b, c,∈ Q∗.
Then (ab)c = a(bc) by assumption ???.

(3) Let e = 1.
Then a · 1 = 1 · a = a for all a ∈ Q∗.

(4) Let a ∈ Q∗.
Then a = m/n where m,n ∈ Z and m 6= 0.
Hence 1/a = n/m ∈ Q∗ and a(1/a) = (1/a)a = 1.

Proposition 12.5. Let G be a group with binary operation ∗. Then
the following are true:

(1) There is only one identity element for G.
(2) Given a ∈ G there is only one inverse of a in G. We denote

the unique inverse of a by a−1.

Proof. (1) Suppose that e1 and e2 are both identity elements
for G.
Then e1 ∗ e2 = e2 since e1 is an identity element for G.
Similarly e1 ∗ e2 = e1 since e2 is an identity element for G.
Hence e1 = e2.

(2) Let a ∈ G.
Let e ∈ G be the identity element for G.
Suppose that x and y are inverses for a.
Then a ∗ x = x ∗ a = e and a ∗ y = y ∗ a = e by Definition
12.1(3).
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Thus a ∗ x = a ∗ y.
Hence y ∗ (a ∗ x) = y ∗ (a ∗ y).
Therefore (y ∗ a) ∗ x = (y ∗ a) ∗ y by Definition 12.1(2).
Hence e ∗ x = e ∗ y.
Ergo x = y.

�

Check for Understanding 12.6. (1) Consider the group of
integers Z under addition. What is the identity element?
Find the inverses of the following elements: 5, 0, −19.

(2) Consider the group Q \ {0} given in Example 12.4. What
is the identity element? Find the inverses of the following
elements: 2/3, 5, 1, −1, −10/3.

(3) Is R a group under addition?
(4) Is R a group under the operation a ∗ b = a− b?

Examples from number theory

Example 12.7. Let n ≥ 2. Then Zn = {0, 1, . . . , n− 1} is a group
under addition.

Proof. We go through the four requirements of a group.

(1) Let a, b ∈ Zn.
Then a+ b = a+ b ∈ Zn by Definition 7.24.

(2) Let a, b, c ∈ Zn.
Since a, b, and c are integers we have that (a+b)+c = a+(b+c)
by assumption ???.
Thus by Definition 7.24 we have that

(a+ b) + c = a+ b+ c = (a+ b) + c

= a+ (b+ c) = a+ b+ c

= a+ (b+ c).

(3) Let e = 0. Let a ∈ Zn.
Then a+ 0 = a+ 0 = a and 0 + a = 0 + a = a.
Hence 0 is an identity element for Zn.

Let a ∈ Zn.
Then −a ∈ Zn.
Furthermore a+−a = a− a = 0 and −a+ a = −a+ a = 0.
Hence −a is an inverse for a. �
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Example 12.8. Consider Z4 = {0, 1, 2, 3}. Then 0 is the identity
of Z4. Since 1 + 3 = 0 we have that 1 and 3 are inverses of each other.
Since 2 + 2 = 0 we have that 2 is it’s own inverse. Since 0 + 0 = 0 we
have that 0 is it’s own inverse.

12.2. The symmetric group

Definition 12.9. Let G be a group with binary operation ∗. We
say that G is abelian if a ∗ b = b ∗ a for all a, b ∈ G.

Example 12.10. The group Z under addition is abelian because
a+ b = b+ a for all integers a, b by assumption ???.

12.3. The group of Pythagorean triples

Consider a right triangle with sides x and y and hypotenuse z.
See Figure 1. From the Pythagorean theorem, we know that triples
of positive numbers (x, y, z) correspond to right triangles with sides x
and y and hypotenuse z.

Number Theorists are interested in the properties of numbers. For
example, they study the integers and the primes. A classic area that
number theorists have studied for hundreds of years is the study of
Pythagorean triples.

Definition 12.11. We say that the triple (x, y, z) is a
Pythagorean triple if x, y, and z are integers that satisfy the equa-
tion x2 + y2 = z2 and where z 6= 0.

Example 12.12. (3, 4, 5) is a Pythagorean triple since 32 +42 = 52.
(6,−8, 10) is a Pythagorean triple since 62 + (−8)2 = 102.
(2, 1, 5) is not a Pythagorean triple since 22 + 12 6= 52.
(1, 0, 1) is a Pythagorean triple since 12 + 02 = 12. Note that the
y coordinate of (1, 0, 1) is zero. (0, 0, 0) is not a Pythagorean triple
since the z-coordinate is zero. Note that (0, 0, 0) is the only triple that
corresponds to z 6= 0.

Too Much Information 12.13. Notice that there are “more”
Pythagorean triples than there are right triangles with integer sides.
For example, (0, 1, 1) is a Pythagorean triple since 02 + 11 = 11, even
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Figure 1. A right triangle

though there is no right triangle with side length 0. And (−3, 4,−5)
is a Pythagorean triple since (−3)2 + 41 = (−5)1, even though there is
no right triangle with sides of negative length.

Questions 12.14. Number Theorists ask questions like the follow-
ing:

(1) How many Pythagorean triples are there?
(2) If there are an infinite number of Pythagorean triples how do

we generate all of them?
(3) Put Sierpinskis question here.

The answer to Question 1 is yes. There are an infinite number of
triples. Let us illustrate this fact. Suppose that (x, y, z) is a Pythagorean
triple. Then x2 + y2 = z2. Let λ ∈ Z with λ 6= 0. Multiplying
x2 + y2 = z2 by λ2 on both sides yields (λx)2 + (λy)2 = (λz)2. Hence
(λx, λy, λz) is a Pythagorean triple.
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For example, using (x, y, z) = (3, 4, 5) we get the following Pythagorean
triples for various values of λ:

...
λ = −3 gives (3λ, 4λ, 5λ) = (−9,−12,−15)
λ = −2 gives (3λ, 4λ, 5λ) = (−6,−8,−10)
λ = −1 gives (3λ, 4λ, 5λ) = (−3,−4,−5)
λ = 2 gives (3λ, 4λ, 5λ) = (6, 8, 10)
λ = 3 gives (3λ, 4λ, 5λ) = (9, 12, 15)
λ = 4 gives (3λ, 4λ, 5λ) = (12, 16, 20)

...

We see that one can get an infinite number of solutions to x2 + y2 =
z2 given a starting solution. However, we can’t get all the solutions
starting with just (3, 4, 5). We need more starting triples. For example,
(5, 12, 13) is a Pythagorean triple but it is not a multiple of (3, 4, 5).

Think about the following. We started with a triple (3, 4, 5). This
triple “generates” an infinite number of triples (3λ, 4λ, 5λ). Here is
another example, consider the triple (297, 1620, 1647). Notice that 27
is a divisor of each of the numbers 297, 1620, and 1647. The triple
(297, 1620, 1647) comes from multiplying the triple (11, 60, 61) by 27.
We can multiply (11, 60, 61) by any non-negative integer and get an
infinite number of Pythagorean triples. These triples will differ from
the ones gotten from (3, 4, 5). In the following discussion we want to
“group together” the triples that arise from a single triple. The way
we will do this is with equivalence classes. We first define a relation on
the Pythagorean triples.

Definition 12.15. Let P denote the set of all Pythagorean triples.
Let (a, b, c), (x, y, z) ∈ P . Define the relation (a, b, c) ∼ (x, y, z) iff
there exists a non-zero rational number r with (a, b, c) = (rx, ry, rz).

Example 12.16. (9, 12, 15) ∼ (3, 4, 5) since (9, 12, 15) = (3 · 3, 3 ·
4, 3 · 5).
(−6,−8,−10) ∼ (9, 12, 15) since (−6,−8,−10) = ((−2/3) · 9, (−2/3) ·
12, (−2/3) · 15).

Too Much Information 12.17. We needed rational numbers in
Definition 12.15 because we want (9, 12, 15) and (−6,−8,−10) to be
related because they come from the same “smallest” triple (3, 4, 5).
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Proposition 12.18. The relation ∼ defined in Definition 12.15 is
an equivalence relation on P .

Proof. (1) Let (x, y, z) ∈ P .
Then (x, y, z) = (1 · x, 1 · y, 1 · z).
Hence (x, y, z) ∼ (x, y, z) since 1 is a non-zero rational number.
Therefore ∼ is reflexive.

(2) Let (a, b, c), (x, y, z) ∈ P .
Suppose that (a, b, c) ∼ (x, y, z).
Then (a, b, c) = ((s/t) · x, (s/t) · y, (s/t) · z) for some rational
number s/t with s 6= 0.
Hence ((t/s) · a, (t/s) · b, (t/s) · c) = (x, y, z) where t/s is a
non-zero rational number.
So (x, y, z) ∼ (a, b, c).
Therefore ∼ is symmetric.

(3) Let (a, b, c), (d, e, f), (g, h, i) ∈ P .
Suppose that (a, b, c) ∼ (d, e, f) and (d, e, f) ∼ (g, h, i).
Then (a, b, c) = (rd, re, rf) and (d, e, f) = (sg, sh, si) for some
non-zero rational numbers r and s.
Hence (a, b, c) = (rsg, rsh, rsi) where rs is a nonzero rational
number.
So (a, b, c) ∼ (g, h, i).
Therefore ∼ is transitive.

�

Notation 12.19. Let (a, b, c) ∈ P and ∼ be as in Definition 12.15.

Instead of denoting the equivalence class of (a, b, c) by (a, b, c) we will
instead use [(a, b, c)].

Example 12.20. Consider the triple (3, 4, 5). Some of the elements
of [(3, 4, 5)] are listed below.

[(3, 4, 5)] = {. . . , (−12,−16,−20), (−9,−12,−15), (−6,−8,−10),

(−3,−4,−5), (3, 4, 5), (6, 8, 10), (9, 12, 15), (12, 16, 20), . . .}

What we have done is we have grouped together all the multiples of
(3, 4, 5) into a single equivalence class.
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Check for Understanding 12.21. (1) List 10 elements in
[(5, 12, 13)].

(2) We say that (x, y, z) ∈ P is primitive if the only positive
common divisor of x,y, and z is 1. Give an example of a
primitive Pythagorean triple. Give an example of a triple
that is not primitive.

(3) Let (a, b, c) ∈ P . Show that there exists a primitive
Pythagorean triple (x, y, z) with [(x, y, z)] = [(a, b, c)].

Definition 12.22. Let Ψ = {[(x, y, z)] | (x, y, z) ∈ P} be the set
of equivalence classes of Pythagorean triples.

Example 12.23. Here we list a few elements from Ψ:

Ψ = {[(3, 4, 5)], [(5, 12, 13)], [(7, 24, 25)], [(8, 15, 17)], . . .}
Too Much Information 12.24. Is Ψ infinite? Yes. We answer

this in ?????????????????????????????.

Too Much Information 12.25. We want a method to generate
new Pythagorean triples from ones that we know. Furthermore, we
want this method to be better than just multiplying by a number. We
want to ”break out” of the equivalence class of a triple.
Suppose that we have two Pythagorean triples (a, b, c) and (d, e, f).
Then a2 + b2 = c2 and d2 + e2 = f 2.
Thus (a2 + b2)(d2 + e2) = (cf)2.
This implies that (ad− be)2 + (ae+ bd)2 = (cf)2.
Therefore (ad− be, ae+ bd, cf) is a Pythagorean triple.
This formula will allow us to generate a new Pythagorean triple from
two that we already have. We formulate this in Definition 12.26.

Definition 12.26. Let Ψ be as in Definition 12.22. Define addition
on Ψ as follows:

[(a, b, c)]⊕ [(d, e, f)] = [(ad− be, ae+ bd, cf)]

Example 12.27. Consider the elements (2, 3, 5), (5, 12, 13) ∈ Ψ.
Using Definition 12.26 we see that

[(3, 4, 5)]⊕[(5, 12, 13)] = [(3·5−4·12, 3·12+4·5, 5·13)] = [(−33, 56, 65)].

Note that (−33)2 + 562 = 652. Hence [(−33, 56, 65)] ∈ Ψ.
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Too Much Information 12.28. The reader may be wondering
why we are defining addition on the set Ψ. Why not just define ad-
dition on P? After all, P is a much simpler set. One can do this,
however P is not a group under the above addition, while Ψ is. (You
need equivalence classes to get an identity element for the group of
Pythagorean triples. See Prop 12.30.)

Too Much Information 12.29. The reader may be wondering
if the addition defined in Definition 12.26 is well-defined. It is. We
will prove this fact in Proposition 12.30. In this remark we want to
remind the reader why we need to check this fact. Note that [(3, 4, 5)] =
[(6, 8, 10)] and [(5, 12, 13)] = [(−10,−24,−26)]. In fact [(3, 4, 5)] can be
written in an infinite number of ways. Same for [(5, 12, 13)]. However,
the addition of [(3, 4, 5)] and [(5, 12, 13)] shouldn’t be influenced by the
way we represent the triples [(3, 4, 5)] and [(5, 12, 13)].

For example, we saw in Example 12.27 that [(3, 4, 5)]⊕[(5, 12, 13)] =
[(−33, 56, 65)]. If ⊕ is well-defined on Ψ then we should have that

[(6, 8, 10)]⊕ [(−10,−24,−26)] = [(3, 4, 5)]⊕ [(5, 12, 13)].

Indeed,

[(6, 8, 10)]⊕ [(−10,−24,−26)] = [(6 · (−10)− 8 · (−24), 6 · (−24) + 8 · (−10), 10 · (−26))]

= [(132,−224,−260)]

= [(4 · (−33), 4 · 56, 4 · 65)]

= [(−33, 56, 65)]

= [(3, 4, 5)]⊕ [(5, 12, 13)].

Proposition 12.30. Ψ is a group under the operation

[(a, b, c)]⊕ [(d, e, f)] = [(ad− be, ae+ bd, cf)].

The identity element is [(1, 0, 1))]. The inverse of [(a, b, c] is [(a,−b, c)].

Proof. 〈We begin by checking that ⊕ is well-defined.〉
Suppose that (a, b, c) and (d, e, f) are Pythagorean triples.
Suppose that we have another representation [(λa, λb, λc)] of [(a, b, c)]
and another representation [(βd, βe, βf)] of [(d, e, f)] where λ and β
are non-zero rational numbers.
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Then

[(λa, λb, λc)]⊕ [(βd, βe, βf)] = [(λβad− λβbe, λβae+ λβbd, λβcf)]

= [(ad− be, ae+ bd, cf)]

= [(a, b, c)]⊕ [(d, e, f)].

Hence ⊕ is well-defined.
〈We now check that the four group properties hold.〉

(1) Let (a, b, c) and (d, e, f) be Pythagorean triples.
Then a2 + b2 = c2 and d2 + e2 = f 2.
By multiplying the two equations given in the line above, we
have that (ad− be)2 + (ae+ bd)2 = (cf)2.
Hence [(a, b, c)]⊕ [(d, e, f)] = [(ad− be, ae+ bd, cf)] is in Ψ.

(2) Let (a, b, c), (d, e, f), and (g, h, i) be Pythagorean triples.
Then

([(a, b, c)]⊕ [(d, e, f)])⊕ [(g, h, i)] = [(ad− be, ae+ bd, cf)]⊕ [(g, h, i)]

= [(adg − beg − aeh− bdh, adh− beh+ aeg + bdg, cfi)]

= [(a, b, c)]⊕ [(dg − eh, dh+ eg, fi)]

= [(a, b, c)]⊕ ([(d, e, f)]⊕ [(g, h, i)])

Hence ⊕ is associative.
(3) Let (a, b, c) be a Pythagorean triple.

Then

[(a, b, c)]⊕ [(1, 0, 1)] = [(a · 1− b · 0, a · 0 + b · 1, c · 1)]

= [(a, b, c)].

and

[(1, 0, 1)]⊕ [(a, b, c)] = [(1 · a− 0 · b, 1 · b+ 0 · a, 1 · c)]
= [(a, b, c)].

Hence [(1, 0, 1)] is an identity element for Ψ.
(4) Let (a, b, c) be a Pythagorean triple.

Then (a,−b, c) is a Pythagorean triple.
Note that

[(a, b, c)]⊕ [(a,−b, c)] = [(a2 + b2,−ab+ ba, c2)]

= [(c2, 0, c2)]

= [(1, 0, 1)]
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and

[(a,−b, c)]⊕ [(a,−b, c)] = [(a2 + b2, ab− ba, c2)]

= [(c2, 0, c2)]

= [(1, 0, 1)]

Hence [(a,−b, c)] is an inverse for [(a, b, c)] in Ψ.

�

12.4. Exercises

(1) Consider the unit circle

U = {(x, y) ∈ R× R | x2 + y2 = 1}.
Show the U is a group under the operation

(x1, y1) ∗ (x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

The identity element is (1, 0). The inverse of (x, y) is (x,−y).
(2) Consider the set

H = {(x, y) ∈ R× R | x2 − y2 = 1}.
Show that H is a group under the operation

(x1, y1) ∗ (x2, y2) = (x1x2 + y1y2, x1y2 + x2y1).

The identity element is (1, 0) and the inverse of (x, y) is (x,−y).



Chapter 13
The Standard Number Systems

Throughout this book, we’ve been working a great deal with some
fairl y standard number systems: the natural numbers, the integers, the
rational numbers, the real numbers, and the complex numbers. We’ve
proved many statements about these sets: that every natural number
can be factored into primes, that

√
2 is not rational, that the set of

real numbers is uncountable, etc. Along the way, we’ve emphasized
how important it is to carefully define all terms. And yet, we’ve been
sloppy about what exactly numbers are. We have not given a rigorous
definition of 47, for example. In this chapter, we begin to rectify that
situation.

There is a problem with trying to define everything and prove ev-
erything. For example, we defined an integer to be even if it is divisible
by 2. Well, what’s the definition of 2? You could define 2 as 1 plus
1. But then you could ask, what’s the definition of 1, and what’s the
definition of “plus”? And so on. Eventually, your definitions would
either be circular, or they would never end.

We run into a similar problem if we try to prove every single state-
ment we claim is true. Because no matter what statement you write
as a justification, you can always ask, “How do you know that that
statement is true?” Your reasoning will either become circular or will
never end.

The solution to both problems is essentially the same: We begin
with terms we do not attempt to define, and statements we do not
attempt to prove. These undefined terms and assumptions serve as
the starting point for all of mathematics. The assumptions will tell us
what we can say about the undefined terms. While we will not prove

232
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the assumptions, we will agree that they are true and deduce whatever
we can from them.

We could take, say, Fermat’s little theorem as one of our starting
assumptions. But that would feel like cheating, because it’s not at all
obvious that p divides ap − a whenever p is prime and a is a natural
number. So we should make as few assumptions as possible, and what
little we do assume should be as self-evident as possible. One of our
starting assumptions, for example, will be that 1 is a natural number.
We will neither prove this fact nor define the terms “1” and “natural
number.” However, assuming that 1 is a natural number should not
cause a great deal of controversy. It seems reasonable to agree to that
fact without asking for a proof of it. That’s exactly what we look for
in an assumption.

Remarkably, all of the amazing theorems in this book and others
follow from just a few basic assumptions about the natural numbers.
We don’t even need to make assumptions about the other standard
number systems (integers, rationals, etc.), because once we have the
natural numbers, we can define those other sets (and all the fun things
that go with them, like addition, subtraction, and so on) and prove
things about them. In this chapter, we take the standard approach,
where we begin with N, then use N to define Z, then use Z to define
Q, then use Q to define R, and then finally use R to define C.

Too Much Information 13.1. All of these definitions will make
use only of previously defined terms, and of the language of set the-
ory (functions, Cartesian products, relations, etc.). For example, in
the final step in our chain of constructions, we will define the com-
plex numbers. By that point, we will have defined the real numbers.
So we will want to define, for example, the imaginary number i. In
other textbooks, you may have seen i defined as

√
−1. In this chapter,

however, we will not allow such a definition. For one thing, we do not
know that

√
−1 exists; for another, we must describe it using only real

numbers and the language of set theory. Instead, we will define i to be
the ordered pair (0, 1). That’s allowable, because all it uses are 0 and
1 (real numbers, previously defined) and an ordered pair (set theory
concept). Now, how does (0, 1) match up with our usual notion of i?
And what about all the other numbers in the world, like 47 and −6
and 22/7 and e and so on—how do we define them? To find out, read
on.

13.1. The natural numbers
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What are the most fundamental properties of the natural numbers?
What distinguishes this collection of numbers from others? One ele-
ment of N catches our attention right from the beginning, namely 1.
We observe that every element has another element that comes “right
after” it. For example, 33 comes right after 32. The number 1, how-
ever, does not come right after any other natural number. (It comes
right after 0, but 0 /∈ N.) We begin by making a definition along these
lines to capture the essential nature of N.

Definition 13.2. Let N be a set, let m ∈ N , and let q : N → N
be a function. We say (N,m, q) is a natural number system if:

(1) There does not exist n ∈ N such that q(n) = m, and
(2) The function q is injective, and
(3) If A is a subset of N such that m ∈ A and q(n) ∈ A whenever

n ∈ A, then N = A.

Too Much Information 13.3. The various parts of Definition
13.2 are called the Peano axioms. They are named after Giuseppe
Peano, the mathematician who first formulated them. The word “ax-
iom” can mean either an assumption that we make, or a fundamental
defining property of an object.

To get our heads around Definition 13.2, let’s do some examples.
For the sake of these examples, let’s temporarily forget that we have
not yet rigorously defined anything.

Example 13.4. Define P : Z → Z by S(n) = n + 1. Is (Z, 1, P ) a
natural number system?

Answer: No, it is not, because P (0) = 1, so Axiom (1) fails. (Note
that P takes the place of q, and 1 takes the place of m.)

Example 13.5. Let T = {2, 4, 8, 16, . . . } be the set of all powers
of 2. Define Q : T → T by Q(n) = 2n. Is (T, 2, Q) a natural number
system?

Answer: Let’s check every part of Definition 13.2, substituting T
for N , 2 for m, and Q for q.

First note that T is a set, 2 ∈ T , and Q : T → T .
Axiom (1) holds, because there is no n ∈ T such that 2n = 2.
Axiom (2) holds, because if 2n = 2m, then n = m.
Axiom (3) holds, because if A is a subset of T such that 2 ∈ A and

2n ∈ A whenever n ∈ A, then T = A. (Think about it this way: once
you have 2 ∈ A, then you get 4 ∈ A, then 8 ∈ A, and so on.)
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Therefore, (T, 2, Q) is a natural number system.

Too Much Information 13.6. In Example 13.5, we are not say-
ing that T is the set of natural numbers. It is not. Instead, T is
a natural number system. We will see later that this simply means
that is has the same basic structure as the natural number: a starting
element followed by another element, then another, and so on.

Example 13.7. Define R : N→ N by R(n) = n + 2. Is (N, 1, R) a
natural number system?

Answer: No, it is not, and here’s why. Let A be the set of odd
natural numbers. Note that 1 ∈ A and that n + 2 ∈ A whenever
n ∈ A. However, N 6= A. So Axiom (3) fails.

Too Much Information 13.8. In fact, in Example 13.7, every
part of Definition 13.2 holds expect for Axiom (3). This shows that
we really do want to include Axiom (3), because it cannot be proved
from the others. In other words, Axiom (3) is independent of the other
axioms. In Exercises 1 and 2, you will prove that Axioms (1) and (2)
are also independent of the others.

Check for Understanding 13.9. (1) LetB be the set of neg-
ative integers. Define f : B → B by f(n) = n − 1. Is
(B,−1, f) a natural number system?

(2) Define g : N → N by g(n) = n + 1. Is (N, 2, g) a natural
number system?

If we could, we would prove the following theorem: “Let N be the
set of natural numbers, and define S : N → N by S(n) = n + 1. Then
(N, 1, S) is a natural number system.” However, we cannot prove that,
because we don’t have anywhere to start. So instead, we take N, 1,
and S to be undefined terms, and we simply assume that they form a
natural number system.

<MAKE THE FOLLOWING ASSUMPTION STAND OUT, WITH
LIKE RAYS OF SUNSHINE COMING OUT OF IT OR SOMETHING.>

Assumption 13.10. There exists a natural number system (N, 1, S).

Definition 13.11. An element of N is a natural number.

Too Much Information 13.12. Some authors include 0 as a
natural number, in which case 0 takes the place of 1 in Assumption
13.10.
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(N, 1, S) 1 7→ 2 7→ 3 7→ 4 7→ · · ·
({2, 4, 8, 16, . . . }, 2, n 7→ 2n) 2 7→ 4 7→ 8 7→ 16 7→ · · ·

({−1,−2,−3,−4, . . . },−1, n 7→ n− 1) −1 7→ −2 7→ −3 7→ −4 7→ · · ·
Table 1. Three different natural number systems

Note that Definition 13.2 does not refer anywhere to addition, order,
quantity, measurement, or counting. It is phrased entirely in the lan-
guage of set theory: elements, functions, subsets, etc. So the concept
of number can be expressed entirely in terms of sets and functions.

The letter S is often used for the function in Assumption 13.10. It
stands for “successor,” that is, the one that comes immediately after-
wards. So intuitively, think of S as the function S(n) = n+1. But this
is not a rigorous definition of S, because “+” has not yet been defined.
In fact, we will later use S to define addition!

While 1 is an undefined term, we can now define the other natural
numbers in terms of 1 and S. For example, the definition of 2 is
2 := S(1). Similarly, 3 := S(S(1)), 7 := S(S(S(S(S(S(1)))))), etc.
We will use the usual decimal representation for natural numbers from
now on, and trust that if pressed, you can convert them into expressions
using only 1 and S.

Axiom (1) from Assumption 13.2 says that there is no natural num-
ber n such that S(n) = 1. (Intuitively, this means that there is no natu-
ral number n such that n+1 = 1.) Axiom (2) says that if S(n) = S(m),
then n = m. (Or intuitively, that n+1 = m+1 implies n = m.) Axiom
(3) is the principle of mathematical induction.

While we can continue to think of N and 1 in the familiar ways we’re
used to, and think of S as the function n 7→ n+ 1, the only statements
about them we can assume to be true without proving them are those
spelled out in the definition of a natural number system. To justify
any other claim about numbers, we must produce a chain of logic that
ultimately begins with Assumption 13.10.

Between Example 13.5, Check for Understanding 13.9(1), and As-
sumption 13.10, we have three examples of natural number systems.
Notice that all three have a similar structure. As illustrated by Table
1, each has a starting element; each element has an immediate succes-
sor; and for each element, there is a unique way to trace back to the
starting element in finitely many steps.
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Definition 13.13. Let (N,m, S) be a natural number system. Let
a ∈ N , and let b = S(a). Then b is the successor of a, and a is the
predecessor of b.

Example 13.14. In the natural number system (T, 2, Q) from Ex-
ample 13.5, what is the successor of 4? What are the predecessor(s) of
64? Which elements of T do not have predecessors in T?

Answer: The successor of 4 is Q(4) = 8.
The predecessor of 64 is 32, because Q(32) = 64. There are no

other predecessors of 64.
The element 2 does not have a predecessor in T , because there does

not exist a ∈ T such that Q(a) = 2.

Check for Understanding 13.15. In the natural number
system (N, 1, S), what is the successor of 4? What are the
predecessor(s) of 1729? Which elements of N do not have
predecessors in N?

After studying Table 1 for a bit, and after considering Example
13.14 and Check for Understanding 13.15, we may conjecture that in
a natural number system (N,m, q), the element m is the only one
without a predecessor, and that every other element has exactly one
predecessor. Our next lemma says precisely that.

Lemma 13.16. Let (N,m, q) be a natural number system. Let b ∈
N . If b 6= m, then b has a unique predecessor.

Proof. First, we will show that b has a predecessor.
We will prove this by contradiction.
Temporarily assume that b does not have a predecessor.
Let A = N \ {b}.
Then m ∈ A, because m 6= b.
We will show that q(n) ∈ A whenever n ∈ A.
Let n ∈ A. We will show that q(n) ∈ A.
We know that q(n) 6= b, because q(n) has a predecessor (namely,

n), but b does not have a predecessor.
So q(n) ∈ A, because q(n) 6= b.
We have shown that m ∈ A and q(n) ∈ A whenever n ∈ A.
So by Definition 13.2(3), therefore N = A.
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But b ∈ N and b /∈ A, so N cannot be a subset of A.
Contradiction.
Therefore, b has a predecessor.
Next, we will show that b has a unique predecessor.
Let a1 and a2 be predecessors of b.
We will show that a1 = a2.
By definition of predecessor, q(a1) = q(a2) = b.
By Definition 13.2, we know that q is injective.
By definition of injective, a1 = a2.
Therefore, b has a unique predecessor. �

Consider the three natural numbers systems shown in Table 1. Ob-
serve that they each have the same structure: an initial element fol-
lowed by its successor, then the successor of the successor, and so on. So
it seems as if any two natural number systems are essentially the same.
Let’s formulate this conjecture more precisely. What do we mean by
“essentially the same”? Suppose we have two natural number systems
(N1,m1, q1) and (N2,m2, q2). There always appears to be a one-to-one
correspondence between N1 and N2. In this correspondence, we should
send the initial element to the initial element m1 to m2. And if a maps
to b, then the successor of a should map to the successor of b. Figure
1 illustrates the sort of correspondence we wish to construct.

Our description of the correspondence we’d like tells us exactly how
to construct it. First, map m1 to m2. Then map q1(m1) to q2(m2).
Then map q1(q1(m1)) to q2(q2(m2)), and so on.

The proof of this theorem will illustrate a common technique at
this stage the game. To prove a statement is true for all elements of
a natural number system (N,m, q), often we let A be the set of all
elements of N for which it is true. We then show that m ∈ A and that
q(n) ∈ A whenever n ∈ A. So by Definition 13.2, A = N , and therefore
the statement is true for all n ∈ N . Essentially, this is induction. We
use it a lot at this point because there is very little else we know at
this point!

2
Q7−→ 4

Q7−→ 8
Q7−→ 16

Q7−→ · · ·
l l l l
−1

B7−→ −2
B7−→ −3

B7−→ −4
B7−→ · · ·

Figure 1. A correspondence between two natural num-
ber systems
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Theorem 13.17. Let (N1,m1, q1) and (N2,m2, q2) be natural num-
ber systems. Then there is a bijection f : N1 → N2 such that f(m1) =
m2 and f(q1(a)) = q2(f(a)) for all a ∈ N1.

Proof. Define f : N1 → N2 by

f(b) =

{
m2 if b = m1

q2(f(a)) if b = q1(a).

Note that Lemma 13.16 guarantees that f is well-defined.
By definition of f , we have that f(m1) = m2.
So we must show that f is a bijection and that f(q1(a)) = q2(f(a))

for all a ∈ N1.
First, we will show that f is a bijection.
To do so, we will show that f has an inverse function.
Define g : N2 → N1 by

g(b) =

{
m1 if b = m2

q1(f(a)) if b = q2(a).

Lemma 13.16 guarantees that g is well-defined.
We will show that g is the inverse of f .
First, we will show that g◦f = iN1 , where iN1 is the identity function

on N1.
We will show that (g ◦ f)(b) = b for all b ∈ N1.
Let A = {b ∈ N1 | (g ◦ f)(b) = b}.
Now, (g ◦ f)(m1) = g(f(m1)) = g(m2) = m1.
So, m1 ∈ A.
Now, suppose that n ∈ A. We will show that q1(n) ∈ A.
The predecessor of q1(n) is n.
So by definition of f , we have that f(q1(n)) = q2(f(n)).
The predecessor of q2(f(n)) is f(n).
So by definition of g, we have that g(q2(f(n))) = q1(g(f(n))).
So

(g ◦ f)(q1(n)) = g(f(q1(n)))

= g(q2(f(n)))

= q1(g(f(n)))

= q1((g ◦ f)(n))

= q1(n), because n ∈ A.
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Therefore q1(n) ∈ A, by definition of A.
So m1 ∈ A and q1(n) ∈ A whenever n ∈ A.
Hence, by Definition 13.2, A = N1.
Therefore, (g ◦ f)(b) = b for all b ∈ N1, by definition of A.
Therefore, g ◦ f = iN1 .
Similarly, we can prove that f ◦ g = iN2 .
Therefore, g is the inverse function of f .
Therefore, f is bijective.
Lastly, we must show that f(q1(a)) = q2(f(a)) for all a ∈ N1. We

will leave this part of the proof for you to do in Exercise 3. �

Too Much Information 13.18. Theorem 13.17 shows that any
two natural number systems have the same essential structure. The
mathy way to say this is that they are isomorphic. The function f
is an isomorphism. Isomorphisms appear in many branches of math.
In Abstract Algebra class, you will encounter them when you study
group theory; two groups are isomorphic if they are essentially the
same. In topology, isomorphisms are called homeomorphisms, but it’s
the same concept. In all cases, the isomorphism acts like a dictionary
that lets you “translate” elements of one set to the equivalent element
in the other set. For example, in Figure 1, the element 16 in the top
natural number system corresponds to the element −4 in the bottom
one. Each is the fourth element in the list, so they play the same role
in the natural number system.

The fact that any two natural number systems are isomorphic
makes us feel better about Assumption 13.10, because it means that
anything you prove about any one particular natural number system
will automatically translate into a true statement about every natural
number system.

13.1.1. Operations on natural numbers. A pretty basic thing
we want to do with numbers is add them. How can we define addi-
tion, when we have only the symbols N, 1, and S to play with? Re-
call that we intuitively think of S as the function n 7→ n + 1. So
we should define n + 1 to be S(n). Now how to define n + 2? We
want n + 2 = (n + 1) + 1 = S(n + 1), which is legitimate, because
n + 1 has already been defined. Then define n + 3 = S(n + 2), and
n+ 4 = S(n+ 3), and so on. The phrase “and so on” suggests that we
are using induction, so to be precise about it, we should make this a
recursive definition.
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Definition 13.19 (Addition of natural numbers). We define the
binary operation + on N by

n+m =

{
S(n) if m = 1

S(n+ a) if m = S(a).

Lemma 13.16 guarantees that Definition 13.19 is well-defined.

Example 13.20. Use Definition 13.19 to find 5 + 3.
Answer: By Definition 13.19, we get 5 + 3 = S(5 + 2), because

3 = S(2).
By Definition 13.19, we get 5 + 2 = S(5 + 1), because 2 = S(1).
By Definition 13.19, we get 5 + 1 = S(5).
So 5 + 3 = S(5 + 2) = S(S(5 + 1)) = S(S(S(5))) = S(S(6)) =

S(7) = 8.

Check for Understanding 13.21. Use Definition 13.19 to find
12 + 4.

Too Much Information 13.22. Your friends will never believe
it when you tell them that this is what you learned in math today.

Of course, you know that addition is commutative. For example,
5 + 3 = 3 + 5, and 12 + 4 = 4 + 12. In general, a + b = b + a. But
now, we can prove it. To do so, as in our previous proofs, we will use
induction. The catch is that there are two variables, so we will need to
do two inductions, one for a, and one for b.

Theorem 13.23 (Commutative property of addition for natural
numbers). We have that a+ b = b+ a for all a, b ∈ N.

Proof. Let A = {a ∈ N | a+ b = b+ a for all b ∈ N}.
We will show that N = A.
To do so, we will show that 1 ∈ A and that S(n) ∈ A whenever

n ∈ A.
First, we will show that 1 ∈ A.
That is, we will show that 1 + b = b+ 1 for all b ∈ N.
Let B = {b ∈ N | 1 + b = b+ 1}.
We will show that N = B.
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To do so, we will show that 1 ∈ B and that S(n) ∈ B whenever
n ∈ B.

We know that 1 ∈ B, because 1 + 1 = 1 + 1.
Now suppose that n ∈ B. We will show that S(n) ∈ B.
That is, we will show that 1 + S(n) = S(n) + 1.
We have that

1 + S(n) = S(1 + n) by Definition 13.19

= S(n+ 1) because n ∈ B
= S(S(n)) by Definition 13.19

= S(n) + 1 by Definition 13.19

So S(n) ∈ B.
We have shown that 1 ∈ B and S(n) ∈ B whenever n ∈ B.
Therefore N = B, by Definition 13.2.
So 1 + b = b+ 1 for all b ∈ N, by definition of B.
Therefore 1 ∈ A, by definition of A.
Now suppose that n ∈ A. We will show that S(n) ∈ A.
That is, we will show that S(n) + b = b+ S(n) for all b ∈ N.
Let C = {b ∈ N | S(n) + b = b+ S(n)}.
We will show that C contains all natural numbers.
To do so, we will show that 1 ∈ C and that S(x) ∈ C whenever

x ∈ C.
First, we will show that 1 ∈ C.
We know that S(n) + 1 = 1 + S(n), because we have previously

shown that 1 ∈ A.
So 1 ∈ C, by definition of C.
Now suppose that x ∈ C. We will show that S(x) ∈ C.
We must show that S(n) + S(x) = S(x) + S(n).
We have that

S(n) + S(x) = S(S(n) + x) by Definition 13.19

= S(x+ S(n)) because x ∈ C
= S(S(x+ n)) by Definition 13.19

= S(S(n+ x)) because n ∈ A
= S(n+ S(x)) by Definition 13.19

= S(S(x) + n) because n ∈ A
= S(x) + S(n) by Definition 13.19

So S(x) ∈ C, by definition of C.
We have shown that 1 ∈ C and that S(x) ∈ C whenever x ∈ C.
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Therefore N = C, by Definition 13.2.
So S(n) + b = b+ S(n) for all b ∈ N, by definition of C.
So S(n) ∈ A.
Therefore S(n) ∈ A whenever n ∈ A.
We have shown that 1 ∈ A and that S(n) ∈ A whenever n ∈ A.
So N = A, by Definition 13.2.
Therefore, by definition of A, for all a ∈ N, it is true that a+b = b+a

for all b ∈ N.
In other words, a+ b = b+ a for all a, b ∈ N. �

Too Much Information 13.24. You may be surprised that it
takes so much work to prove such an obvious fact. Take a moment to
marvel, though, at the fact that we have just proved infinitely many
things. We have just proved that a googol plus a googolplex equals
a googolplex plus a googol. We have just proved that my favorite
number plus your favorite number equals your favorite number plus
mine, without even knowing what those numbers are. In that light,
maybe this proof wasn’t so long after all. The fact that we can prove
infinitely many things in a finite amount of time is quite remarkable.

Another basic fact about addition of natural numbers is the asso-
ciative property, that is, the fact that (a + b) + c = a + (b + c) for
all a, b, c ∈ N. We will leave the proof of this fact for you as an exer-
cise (Exercise 6). Be aware that because there are three variables, you
should expect to have to do three inductions, one for each variable.

Now, let’s define multiplication of natural numbers. This time, we
have not only N, 1, and S to work with, we also have addition, because
we’ve defined it. Intuitively, multiplication is repeated addition, so our
definition should capture that. We want a · 1 = a for all a ∈ N. Then
we want a · 2 = a · (1 + 1) = a · 1 + a · 1, which has meaning once a · 1
is defined. Next we’ll want a · 3 = a · 2 + a · 1, which is legitimate so
long as a · 2 and a · 1 have been defined. So first, we’ll define a · 1, and
then a · 2 in terms of a · 1, then a · 3 in terms of a · 2 and a · 1, and so
on. As with addition, the phrase “and so on” suggests that a recursive
definition is in order.

Definition 13.25 (Multiplication of natural numbers). We define
the binary operation · on N by

n ·m =

{
n if m = 1

n · a+ n if m = S(a).
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Now we have two structures on N, addition and multiplication.
Having defined them, we want to establish how they relate to them-
selves and to each other. Some of the basic facts to establish along
these lines are the identity, commutative, associative, and distributive
properties. See Table 2 on page 298. In Theorem 13.28, we will prove
the identity property of multiplication. In the exercises, you will be
asked to prove the others, using nothing but facts we have established
up to this point. After proving Theorem 13.28, we will make free use
of the other addition and multiplication properties listed in Table 2 on
page 298.

Definition 13.26. Let ∗ be a binary operation on a set A, and let
e ∈ A. We say that e is an identity element for A with respect to ∗
if for all x ∈ A, we have that e ∗ x = x ∗ e = x.

Too Much Information 13.27. If you take an Abstract Algebra
course in the future, be sure to remember this definition of an “identity
element.” In that class, you will study mathematical objects called
groups, and the existence of an identity element is one of the defining
axioms for a group.

Theorem 13.28 (Identity property of multiplication for natural
numbers). For all a ∈ N, we have that 1 ·a = a ·1 = a. In other words,
1 is an identity element for N with respect to multiplication.

Proof. By Definition 13.25, we know that a · 1 = a for all a ∈ N.
So we will show that 1 · a = a for all a ∈ N.
Let A = {a ∈ N | 1 · a = a}.
We will show that N = A.
To do so, we will show that 1 ∈ A and that S(n) ∈ A whenever

n ∈ A.
First, we will show that 1 ∈ A.
We know that 1 · 1 = 1, by Def. 13.25.
So 1 ∈ A, by definiton of A.
Now, let n ∈ A. We will show that S(n) ∈ A.
By definition of A, we know that

(5) 1 · n = n.

We will show that 1 · S(n) = S(n).
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We know that

1 · S(n) = 1 · n+ 1 by Definition 13.25

= n+ 1 by equation (5)

= S(n). by Definition 13.19

We have shown that 1 ∈ A and that S(n) ∈ A whenever n ∈ A.
Therefore, by Definition 13.2, N = A.

Therefore 1 · a = a for all a ∈ N. �

Too Much Information 13.29. We sometimes abbreviate “1 is
an identity element for N with respect to multiplication” by saying that
1 is a multiplicative identity for N.

In fact, 1 is the only multiplicative identity for N—see Exercise 7.

From now on, we will not hesitate to use other standard notations
for multiplication, such as ab instead of a · b, or 5(6) instead of 5 · 6,
etc.

With the addition and multiplication properties from Table 2 on
page 298 in hand, we can loop back around to some of the very first
proofs we did way back in Chapter 4, but now we can prove every single
step with complete rigor.

Example 13.30. Let k, ` ∈ N. Prove in minute detail that ∃m ∈ N
such that 2k + (2`+ 1) = 2m+ 1.

Proof. We know that

2k + (2`+ 1) = (2k + 2`) + 1 by the associative property of addition

= 2(k + `) + 1 by the distributive property

Let m = k + `. Then 2k + (2`+ 1) = 2m+ 1 by substitution. �

Too Much Information 13.31. In Example 13.30, we have avoided
saying, “Prove that an even natural number plus an odd natural num-
ber is odd,” because the definitions of “even” and “odd” refer to the
set of integers, which we have not yet defined.

Too Much Information 13.32. The first several proofs in this
chapter were quite cumbersome, because we had virtually no tools to
work with and so had to rely on the rather clunky axioms to make any
progress. Once we have the properties listed in Table 2 on page 298,
though, we can do proofs such as the one in Example 13.30 much more
efficiently.

Check for Understanding 13.33. Let k, ` ∈ N. Prove in minute
detail that ∃m ∈ N such that (2k + 1) + (2`+ 1) = 2m+ 1.
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In Theorem 13.28, we proved that 1 is a multiplicative identity
for the natural numbers. Is there an additive identity for N? In other
words, does there exist n ∈ N such that x+n = n+x = x for all x ∈ N?
The only reasonable candidate is 0, but 0 is not a natural number. Our
next lemma will establish that in N, the equation x+ n = x can never
hold.

Lemma 13.34. Let x, n ∈ N. Then x+ n 6= x.

Proof. Temporarily assume x+ n = x.
Then (x+ n) + 1 = x+ 1.
So [(x+ n) + 1] + 1 = (x+ 1) + 1.
So [x + (n + 1)] + 1 = (x + 1) + 1, by the associative property of

addition.
So [x+ (1 + n)] + 1 = (x+ 1) + 1, by the commutative property of

addition.
So [(x + 1) + n] + 1 = (x + 1) + 1, by the associative property of

addition.
So (x + 1) + (n + 1) = (x + 1) + 1, by the associative property of

addition.
So n+ 1 = 1, by the cancellation property of addition.
So S(n) = 1, by Definition 13.19.
But this contradicts Axiom (1) from Definition 13.2.
Therefore x+ n 6= x. �

Question 13.35. In the proof of Lemma 13.34, we began by adding
1 to both sides of the equation twice. Why couldn’t we have just done
it once?

13.1.2. Ordering the natural numbers. So far, we have made
an assumption about the natural numbers, defined addition and mul-
tiplication, and proved a few basic facts about them. We now want to
define one more fundamental feature of N, namely its ordering. That
is, we will define the < symbol. Our definition of < should correspond
to our usual notion of “less than.” So 36 < 47 should be true, for ex-
ample, but 5 < 3 should not. How can we explain why 36 < 47 is true
solely in terms of addition and multiplication in N? Intuitively, 36 is
less than 47 because you must increase 36 to get 47. Which previously
defined concept captures the notion of “increasing”? Well, addition.
We know 36 < 47, because 36 + 11 = 47, and 11 ∈ N. Adding two
natural numbers produces a third that is larger than either.



13. THE STANDARD NUMBER SYSTEMS 247

Definition 13.36. We define the relation < on N by x < y iff there
exists n ∈ N such that x + n = y. We define the relation ≤ on N by
x ≤ y iff x < y or x = y.

Too Much Information 13.37. Many other related notations
derive from Definition 13.36. For example, y > x means x < y, and
x ≤ y < z means x ≤ y and y < z, and so forth. We will trust that you
will find a way to correctly define any expression containing inequalities
that you encounter in terms of Definition 13.36.

Theorem 13.38. The relation ≤ defines a linear ordering on N.

Proof. Recall the definition of linear ordering. We must show
that ≤ is reflexive, antisymmetric, and transitive.

First, note that Definition 13.36 immediately implies that x ≤ x
for all x ∈ N. Therefore ≤ is reflexive.

Next, we will show that ≤ is antisymmetric.
Let x, y ∈ N such that x ≤ y and y ≤ x. We will show that x = y.
Temporarily assume that x 6= y.
Then by Definition 13.36, we have that x < y and y < x.
So, by Definition 13.36, there exist n,m ∈ N such that x + n = y

and y +m = x.
So (x+ n) +m = x, by substitution.
So x+ (n+m) = x, by the associative property of addition.
But this contradicts Lemma 13.34, because x, n+m ∈ N.
Therefore, x = y.
Finally, we will show that ≤ is transitive.
Let x, y, z ∈ N such that x ≤ y and y ≤ z. We will show that

x ≤ z.
Case 1: x = y or y = z. Then x ≤ z by substitution.
Case 2: x 6= y and y 6= z.
Then x < y and y < z, by Definition 13.36.
Therefore there exist n,m ∈ N such that x+ n = y and y+m = z,

by Definition 13.36.
So (x+ n) +m = z, by substitution.
So x+ (n+m) = z, by the associative property of addition.
So x < z, by Definition 13.36.
So x ≤ z, by Definition 13.36.
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Therefore, ≤ is transitive.
Therefore, ≤ is a linear ordering on N, by definition of linear order-

ing. �

There are many basic properties that relate the linear ordering ≤ on
N to the fundamental operations of addition and multiplication. Some
of these are listed in Table 3 on page 298. In the exercises, you will be
asked to prove them.

13.1.3. Strong induction and well-ordering. We now prove
two fundamental properties of N, which we used throughout Chapter
5. The first is the principle of strong induction.

Theorem 13.39 (Principle of Strong Induction). Let A be a subset
of N such that for all n ∈ N, we have that n ∈ A whenever k ∈ A for
all natural numbers k < n. Then N = A.

Proof. 〈We’d like to use induction here. In other words, we’d like
to show that 1 ∈ A, and then show that S(n) ∈ A whenever n ∈ A.
However, the given information does not allow us to go from n ∈ A to
S(n) ∈ A, because to get an element in A, we need all previous natural
numbers in A, not just the immediate predecessor. So we introduce
an auxiliary set B such that, for example, 5 ∈ B iff 1, 2, 3, 4, 5 ∈ A,
and 7 ∈ B iff 1, 2, 3, 4, 5, 6, 7 ∈ A, and so on. Then we can apply
usual induction on the set B, because we can get from one step to the
next. For example, if 7 ∈ B, then 1, 2, 3, 4, 5, 6, 7 ∈ A, so 8 ∈ A, so
1, 2, 3, 4, 5, 6, 7, 8 ∈ A, so 8 ∈ B.〉

Let B = {n ∈ N | k ∈ A for all k ∈ N such that k ≤ n}.
We will show that N = B.

First, we will show that 1 ∈ B.
By Exercise 8, we know that there is no k ∈ N such that k < 1.
Therefore the statement “k ∈ A for all natural numbers k < n” is

vacuously true.
So by definition of A, we have that 1 ∈ A.
Therefore, k ∈ A for all k ∈ N such that k ≤ 1. (Because the only

such k is k = 1.)
So 1 ∈ B, by definition of B.

Next, we will show that S(n) ∈ B whenever n ∈ B.
Suppose that n ∈ B.
Then k ∈ A for all k ∈ N such that k ≤ n, by definition of B.
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Therefore k ∈ A for all k ∈ N such that k < S(n). (Here we use
Exercise 9.)

So S(n) ∈ A, from the given information about A.
So k ∈ A for all k ∈ N such that k ≤ S(n).
Therefore, S(n) ∈ B, by definition of B.
We have shown that 1 ∈ B and that S(n) ∈ B whenever n ∈ B.
Therefore, N = B.

Notice that B ⊆ A, by definition of B.
So N ⊆ A.
It was given that A ⊆ N.
Therefore, N = A. �

Finally, we will prove the well-ordering principle.

Theorem 13.40 (Well Ordering Principle). Let A be a nonempty
subset of N. Then A contains a smallest element. In other words, there
exists n ∈ A such that n ≤ k for all k ∈ A.

Proof. 〈If 1 ∈ A, then we’re done—that’s the smallest element.
So imagine that 1 /∈ A. Then if 2 ∈ A, we’re done, similarly. So
imagine that 1, 2 /∈ A. In that case, if 3 ∈ A, we’re done. And so
on. At each stage, we imagine that 1, 2, ..., k /∈ A, then note that we’re
done if k + 1 ∈ A. Now this process has to stop at some point, because
otherwise, A would be empty. The word “otherwise” tips us off that
we’re really doing a proof by contradiction. Something goes wrong if A
does not have a smallest element. What goes wrong is that A winds up
empty, because its complement is all of N. To get every natural number
in the complement, we’re going from 1, 2, ..., k /∈ A to k + 1 /∈ A; in
other words, we’re using strong induction.〉

Temporarily assume that A does not contain a smallest element.
Let B = N \ A. 〈That is, B is the complement of A.〉

We will show that N = B.
We will show that n ∈ B whenever k ∈ B for all natural numbers

k < n.
Suppose that n ∈ N and that k ∈ B for all natural numbers k < n.
We will show that n ∈ B.
Temporarily assume that n /∈ B.
Then n ∈ A, by definition of B.
Our given information about n tells us that if k < n, then k /∈ A,

by definition of B.
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So by taking the contrapositive to get an equivalent statement, we
get that if k ∈ A, then n ≤ k. (Here we use that ≤ is a linear ordering
on N.)

So n is the smallest element of A.
This is a contradiction, because we assumed that A has no smallest

element.
Therefore n ∈ B.

We have shown that n ∈ B whenever k ∈ B for all natural numbers
k < n.

So by the Principle of Strong Induction, N = B.
So A = ∅.
But this contradicts our assumption that A is nonempty.
Therefore A contains a smallest element. �

Too Much Information 13.41. Recall that Axiom (3) of Defi-
nition 13.2 is essentially induction. In Theorem 13.39, we showed that
induction implies strong induction. In Theorem 13.40, we showed that
strong induction implies the well-ordering principle. In fact, it can be
shown that the well-ordering principle implies induction. So these three
statements (induction, strong induction, well-ordering) are equivalent.
However, of the three, Axiom (3) of Definition 13.2 is perhaps the sim-
plest to state, because it refers only to the symbols m and q; the other
two statements refer to the ordering.

Answers to CFUs

13.1.4. Exercises for Section 13.1. For each of these exer-
cises, when you are asked to prove something, you may assume that
the previous exercises have already been proved, but not the later ones.

(1) Let K = {1}. Define p : K → K by p(1) = 1. Verify that
(K, 1, p) satisfies all parts of Definition 13.2 except Axiom (1).
This shows that Axiom (1) is independent of the others.

(2) Let K = {1, 2}. Define p : K → K by p(1) = p(2) = 2. Verify
that (K, 1, p) satisfies all parts of Definition 13.2 except Axiom
(2). This shows that Axiom (2) is independent of the others.

(3) Prove the last part of Theorem 13.17. Hint: Let A = {a ∈
N1 | f(q1(a)) = q2(f(a))}.

(4) Prove the associative property of addition for natural numbers.
(5) Prove the commutative property of multiplication for natural

numbers.
(6) Prove the associative property of multiplication for natural

numbers.
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(7) (a) Let A be a set with a binary operation ∗, and let c, d ∈ A.
Prove that if c and d are identity elements for A with re-
spect to ∗, then c = d. (This shows that identity elements
are unique, if they exist.)

(b) Prove that 1 is the only multiplicative identity for N.
(8) Prove that 1 is the smallest natural number. In other words,

prove that for all n ∈ N, we have that 1 ≤ n.
(9) Let k, n ∈ N. Prove that if k < S(n), then k ≤ n.

13.2. The integers

Now that we have natural numbers to work with, how can we define
the entire set of integers, including the negative numbers and zero?
Consider −3, for example. How can we define it strictly in terms of
positive integers, using only concepts we have defined up to this point?

We would like to think that −3 = 2 − 5, for example. We cannot,
however, take that as a definition of−3, because we have not yet defined
subtraction. At least, though, we can work with 2 and 5, because they
live in N. So we can think of −3 as being given somehow by the two
natural numbers 2 and 5. Do we want to use the set {2, 5} or the
ordered pair (2, 5)? To answer that question, we ask ourselves: Does
the order matter here? Yes, it does, because we want 2 − 5 to be
different than 5− 2. So we will think of −3 as the ordered pair (2, 5).

However, (2, 5) is not the only ordered pair of natural numbers that
could represent −3; the way we’re thinking about it, the ordered pair
(4, 7) would also represent −3, because 4− 7 = −3. So we have many
ordered pairs of natural numbers that could potentially represent the
same integer, and we want to think of them as essentially the same.
What mathematical concept allows us to think of different things as
“essentially the same”? The answer is equivalence relations. So we
must define an equivalence relation so that (2, 5) is equivalent to (4, 7),
and in general so that two ordered pairs are equivalent iff they represent
the same integer. That is, we want (a, b) to be equivalent to (c, d) iff
a − b = c − d. But we cannot use that as our definition, because we
have only defined addition and multiplication in N; we have not defined
subtraction. No problem. The equation a− b = c− d is equivalent to
a+d = b+c. This latter definition can serve as our desired equivalence
relation.
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Notation 13.42. Throughout this section, we define the relation
∼ on N× N by

(a, b) ∼ (c, d) iff a+ d = b+ c.

Lemma 13.43. The relation ∼ is an equivalence relation on N×N.

Proof. First, we will show that ∼ is reflexive.
Let (a, b) ∈ N× N.
We know that a+b = b+a, by the commutative property of addition

for natural numbers.
So (a, b) ∼ (a, b), by the definition of ∼.
Therefore, ∼ is reflexive.
Next, we will show that ∼ is symmetric.
Let (a, b), (c, d) ∈ N× N such that (a, b) ∼ (c, d).
We will show that (c, d) ∼ (a, b).
We know that a+ d = b+ c, by definition of ∼.
So c + b = d + a, by the commutative property of addition for

natural numbers.
Therefore (c, d) ∼ (a, b), by definition of ∼.
So ∼ is symmetric.
Finally, we will show that ∼ is transitive.
Let (a, b), (c, d), (e, f) ∈ N×N such that (a, b) ∼ (c, d) and (c, d) ∼

(e, f).
We will show that (a, b) ∼ (e, f).
By definition of ∼, we know that

(6) a+ d = b+ c

and

(7) c+ f = d+ e.

From (6) we get (a+ d) + e = (b+ c) + e.
So a+ (d+ e) = (b+ c) + e, by the associative property of addition

for natural numbers.
Substituting from (7), we get a+ (c+ f) = (b+ c) + e.
Using a combination of commutativity, associativity, and cancella-

tion, we can cancel the c from both sides to get a+ f = b+ e.
Therefore, (a, b) ∼ (e, f), by definition of ∼.
So ∼ is transitive.
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Therefore, ∼ is an equivalence relation on N × N, by definition of
equivalence relation. �

Check for Understanding 13.44. In the proof of Lemma 13.43,
why couldn’t we have done the following to get transitivity, starting
with equations (6) and (7)?
From (6) and (7), we get a− c = b− d and c− e = d− f .
Add these two to get a− e = b− f .
Therefore a+ f = b+ e.

Recall that the equivalence class of an element x, denoted [x], is
the set of all elements equivalent to x.

Example 13.45. Describe [(7, 9)]. Intuitively, what integer does it
represent?

Answer: [(7, 9)] is the set of all elements (a, b) ∈ N × N such that
a+ 9 = b+ 7, or equivalently, such that a+ 2 = b.

So [(7, 9) = {(1, 3), (2, 4), (3, 5), . . . }.
Intuitively, [(7, 9)] represents the integer −2, because 7− 9 = −2.

Check for Understanding 13.46. (1) Describe [(10, 4)]. In-
tuitively, what integer does it represent?

(2) Describe [(6, 6)]. Intuitively, what integer does it represent?

Definition 13.47. We define the set Z to be the set of all equiv-
alence classes with respect to the relation ∼ from Notation 13.42. An
element of Z is an integer.

That is, every integer is an equivalence class of ordered pairs of
natural numbers.

13.2.1. Operations on the integers. Just as we did for the
natural numbers, we now want to define the basic structures on the
integers and establish their fundamental properties. Addition and
mutliplication were the two most important operations on the natu-
ral numbers, and we will define them for the integers as well. The set
Z possesses one other operation that N lacks, namely subtraction, so
we want to define that, too. Like N, the other basic structure on Z is its
ordering. After making these definitions, we will then prove (or have
you prove) the properties that describe how these structures interrelate
with themselves and with each other.
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How should we define addition of integers? In other words, suppose
that [(a, b)] and [(c, d)] are two equivalence classes of ordered pairs
of natural numbers; what equivalence class should represent [(a, b)] +
[(c, d)]? Remember that intuitively, [(a, b)] stands for the integer a− b,
and [(c, d)] stands for the integer c − d. So when we add them we
should get (a − b) + (c − d) = (a + c) − (b + d), which is represented
by [(a+ c, b+ d)]. This is a legitimate definition, because a, b, c, d ∈ N,
and addition has already been defined for natural numbers.

Similar considerations lead to the definition of multiplication. We
want (a− b)(c− d) = ac− ad− bc+ bd = (ac+ bd)− (ad+ bc). So we
define [(a, b)] · [(c, d)] to be [(ac+ bd, ad+ bc)].

Definition 13.48. Let [(a, b)], [(c, d)] ∈ Z. We define

[(a, b)] + [(c, d)] := [(a+ c, b+ d)]

and
[(a, b)] · [(c, d)] := [(ac+ bd, ad+ bc)].

When inputs are equivalence classes, we must always be concerned
with well-definedness. After all, [(7, 9)] and [(12, 14)] represent the
same integer, as do [(3, 1)] and [(5, 3)], so we should get the same
output when we add them, or when we multiply them.

In the following proof, and indeed from this point forward, we will

freely invoke the properties of natural numbers listed in Section 13.6
without mentioning them each time we use them. Other-
wise, our already lengthy and tedious proofs would become
completely unwieldy.

Lemma 13.49. The operations + and · on Z are well-
defined.

Proof. We will prove that multiplication is well-defined;
in the exercises, you will prove that addition is well-defined.

Suppose [(a, b)] = [(x, y)] and [(c, d)] = [(z, w)]. We will
show that [(ac+ bd, ad+ bc)] = [(xz + yw, xw + yz)].
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That is, we will show that

(8) (ac+ bd) + (xw + yz) = (ad+ bc) + (xz + yw).

By definition of equivalence class, we know that (a, b) ∼
(x, y) and (c, d) ∼ (z, w).

By definition of ∼, then,

(9) a+ y = b+ x

and

(10) c+ w = d+ z

.
〈Somehow, we want to take advantage of the fact that we

know (9) and (10) are true. But neither side of either equa-
tion appears anywhere in (8). So we add some “helpers” to
force them to appear. For example, if we add the helper aw
to both sides of (8), the left side becomes

ac+ bd+ xw + yz + aw = a(c+ w) + bd+ xw + yz

= a(d+ z) + bd+ xw + yz,

by (10). In all, we’ll wind up needing four “helpers,” one
for each term on each side of (8).〉

So

(ac+ bd+ xw + yz) + (aw + bz + bw + az)

= a(c+ w) + b(d+ z) + w(b+ x) + z(a+ y)

= a(d+ z) + b(c+ w) + w(a+ y) + z(b+ x)

= (ad+ bc+ xz + yw) + (aw + bz + bw + az)

By cancellation, we then get (8). �

Table 2 on page 298 lists several addition and multipli-
cation properties of N. In fact, Z shares all of them. We
will prove the distributive property and leave the others as
exercises.
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Theorem 13.50 (Distributive property for the inte-
gers). Let x, y, z ∈ Z. Then

x(y + z) = xy + xz.

Proof. By Definition 13.47, we have that x = [(a, b)], y =
[(c, d)], and z = [(e, f)] for some a, b, c, d, e, f ∈ N.

By Definition 13.48, we have

x(y + z) = [(a, b)]([(c, d)] + [(e, f)])

= [(a, b)] · [(c+ e, d+ f)]

= [(a(c+ e) + b(d+ f), a(d+ f) + b(c+ e))]

= [((ac+ bd) + (ae+ bf), (ad+ bc) + (af + be))]

= [(ac+ bd, ad+ bc)] + [(ae+ bf, af + be)]

= [(a, b)] · [(c, d)] + [(a, b)] · [(e, f)]

= xy + xz. �

Does Z have any properties that N does not have? Ear-
lier, we remarked that N does not have an additive identity,
essentially because 0 /∈ N. However, 0 is an integer, so Z
should have an additive identity. Which equivalence class
[(a, b)] represents 0? We need a − b = 0, so anything with
a = b will do. The most convenient choice is a = b = 1.

Definition 13.51. We define the integer 0 := [(1, 1)].

We’re defining zero! Can you believe that?

Theorem 13.52. For all x ∈ Z, we have that 0 + x =
x+ 0 = x.
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Proof. Let x ∈ Z.
By Definition 13.47, we have that x = [(a, b)] for some

a, b ∈ N. So,

0 + x = [(1, 1)] + [(a, b)] by Definition 13.51

= [(1 + a, 1 + b)] by Definition 13.48

= [(a, b)] because (1 + a, 1 + b) ∼ (a, b)

= x

The equation x+ 0 = x then follows from the commutative
property of addition for integers. �

Too Much Information 13.53. Theorem 13.52 shows
that 0 is an identity element for addition on Z. More suc-
cinctly, we say that 0 is the additive identity for Z. Re-
call that Exercise 7 shows that any identity element for any
particular operation must be unique, so there are no other
additive identities.

Too Much Information 13.54. Recall our discussion
of the term “isomorphic” in Remark 13.18. Theorem 13.52
gives us a property of Z that N does not have. This shows
that Z and N are not isomorphic, at least as far as addition
is concerned. For a more precise statement of this fact, see
Exercise 3.

Is there a property of N that Z does not have? Yes—
induction. More precisely, (N, 1, n 7→ n + 1) is a natural
number system, but there does not exist a ∈ Z such that
(Z, a, n 7→ n+ a) is a natural number system.

Other than 0, what distinguishes Z from N is all those
negative numbers. What’s so special about −5, anyway?
The point is that it cancels out 5. In other words, −5+5 =
0. We say that −5 and 5 are “additive inverses” of one
another. Now let’s be precise. What’s the additive inverse
of an integer [(a, b)]? We think of [(a, b)] as a − b, so its
opposite should be b− a, which we represent by [(b, a)].
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Theorem 13.55. Let x ∈ Z. Then there exists a unique
y ∈ Z such that x+ y = y + x = 0.

Proof. We will prove existence; in Exercise 4, you will
prove uniqueness.

By Definition 13.47, we have that x = [(a, b)] for some
a, b ∈ N.

Let y = [(b, a)].
Then

x+ y = [(a, b)] + [(b, a)]

= [(a+ b, b+ a)] by Definition 13.48

= [(1, 1)] because (a+ b, b+ a) ∼ (1, 1)

= 0 by Definition 13.51.

The fact that y+ x = 0 now follows from the commuta-
tive property of addition for integers. �

Definition 13.56. Let x ∈ Z. We define −x to be the
unique integer such that

x+ (−x) = −x+ x = 0.

We say that −x is the additive inverse or opposite of x.

Too Much Information 13.57. The proof of Theo-
rem 13.55 shows that additive inverse of [(a, b)] is [(b, a)].

Too Much Information 13.58. We sometimes refer
to −x as “negative x,” but this can lead to confusion, as
−x might not be negative. For example, if x = −3, then
−x = 3, which is positive.

Example 13.59. Express −[(5, 1)] in the form [(a, b)].
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Answer: We have that−[(5, 1)] = [(1, 5)], because [(5, 1)]+
[(1, 5)] = [(1, 5)] + [(5, 1)] = [(6, 6)] = [(1, 1)] = 0.

Next, we want to define subtraction. That is, given
x, y ∈ Z, we want to define the difference x − y. How can
we express that in terms of previously defined concepts?
Well, we want x − y = x + (−y), and both addition and
opposites have been defined for integers. So . . .

Definition 13.60. Let x, y ∈ Z. We define the differ-
ence of x and y by

x− y := x+ (−y).

Check for Understanding 13.61. Suppose we tried
to define subtraction of integers as follows. Let x, y ∈ Z,
and take x − y := [(x, y)]. Would this be an acceptable
definition? Why or why not?

13.2.2. Ordering the integers. Next, we define the
usual ordering on Z. We begin by defining positive and
negative numbers. Then we use those concepts to define <
in general.

Should we consider the integer [(20, 12)] to be positive?
We think of it as 20 − 12 = 8, so it should be positive.
How could we tell that just from the numbers 20 and 12?
A moment’s thought shows that it’s because 20 > 12.

Definition 13.62. Let x = [(a, b)] ∈ Z. We say that x
is positive if a > b. We say that x is negative if a < b.

In Exercise 7, you will show that this definition does not
depend on the particular choice of ordered pair to represent
x.
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Now, how can we define < for the integers in terms of
previously defined concepts? We want x < y iff 0 < y−x iff
y−x is positive. The latter formulation is perfect, because
both “subtraction” and “positive” have been defined for Z.

Definition 13.63. We define the relation < on Z by

x < y iff y − x is positive.

We define ≤ by x ≤ y iff x < y or x = y.

Too Much Information 13.64. As with N, we’ll trust
that you can properly define related notations such as x < y
and x < y ≤ z and so on.

Tables 3 and 5 list several basic properties for the or-
dering on Z. In the exercises, you will be asked to prove
them.

13.2.3. Embedding the natural numbers in the
integers. Perhaps by now you can see why we usually
write an integer in the form, say, −47 instead of [(6, 53)].
The equivalence-class-of-ordered-pair-of-natural-numbers no-
tation is rather cumbersome. Moreover, we think of N as a
subset of Z, but strictly speaking, a natural number is not
the same thing as an integer [(a, b)]. So our next task will
be to show that N really does sit inside Z in a “natural”
way.

First, we need a systematic way to think of a natural
number as an integer. We can represent 7, for example
in many ways. It is [(8, 1)] = [(9, 2)] = [(10, 3)] = . . . .
The simplest one comes at the beginning, namely [(8, 1)].
Indeed, a natural number n can be represented by [(n +
1, 1)]. This defines a function, as in Figure 2.

Moreover, all of the structures we’ve defined on N (addi-
tion, multiplication, ordering) work exactly the same way in
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N Z
...

...
...

n 7→ [(n+ 1, 1)] = n
...

...
...

3 7→ [(4, 1)] = 3
2 7→ [(3, 1)] = 2
1 7→ [(2, 1)] = 1

[(1, 1)] = 0
[(1, 2)] = −1
[(1, 3)] = −2
...

Figure 2. An embedding of N into Z

N as do their counterparts in Z under this correspondence.
For example, in N you can use Definition 13.25 to find that
2 · 3 = 6. Denote the function in Figure 2 by f . Then
f(2) = [(3, 1)], and f(3) = [(4, 1)], and f(6) = [(7, 1)].
Well, whaddya know, using the definitions from this sec-
tion, we find that [(3, 1)] · [(4, 1)] = [(13, 7)] = [(7, 1)]. In
other words, f(2 · 3) = f(2) · f(3). If that works out for all
natural numbers, then we say that the function “preserves
multiplication.”

Theorem 13.65. The set N embeds into Z in a way that
preserves addition, multiplication, and ordering. In other
words, there exists an injective function f : N → Z such
that for all a, b ∈ N,

f(a+ b) = f(a) + f(b), and

f(a · b) = f(a) · f(b), and

a < b iff f(a) < f(b).
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Proof. Define f : N→ Z by f(n) = [(n+ 1, 1)].
First, we will show that f is injective.
Suppose f(n) = f(m) for some n,m ∈ N.
We will show that n = m.
By definition of f , we have that [(n+1, 1)] = [(m+1, 1)].
So (n + 1, 1) ∼ (m + 1, 1), by definition of equivalence

class.
So n+ 2 = m+ 2, by Notation 13.42.
So n = m, by cancellation.
Therefore, f is injective.

Next, we will show that f(a + b) = f(a) + f(b) for all
a, b ∈ N.

Let a, b ∈ N.
Then

f(a) + f(b) = [(a+ 1, 1)] + [(b+ 1, 1)] by definition of f

= [(a+ b+ 2, 2)] by Definition 13.48

= [(a+ b+ 1, 1)] because (a+ b+ 2, 2) ∼ (a+ b+ 1, 1)

= f(a+ b) by definition of f

Next, we will show that f(ab) = f(a) · f(b) for all a, b ∈
N.

Let a, b ∈ N.
Then

f(a) · f(b) = [(a+ 1, 1)] · [(b+ 1, 1)] by definition of f

= [((a+ 1)(b+ 1) + 1, (b+ 1) + (a+ 1))] by Definition 13.48

= [(ab+ a+ b+ 2, a+ b+ 2)]

= [(ab+ 1, 1)]

= f(ab). by definition of f

Note that in the next to last step, we used that (ab +
a+ b+ 2, a+ b+ 2) ∼ (ab+ 1, 1).
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Finally, we will show that a < b iff f(a) < f(b) for all
a, b ∈ N.

This holds because

f(a) < f(b) iff f(b)− f(a) is positive, by Definition 13.63

iff [(b+ 1, 1)]− [(a+ 1, 1)] is positive, by definition of f

iff [(b+ 1, 1)] + (−[(a+ 1, 1)]) is positive, by Definition 13.60

iff [(b+ 1, 1)] + [(1, a+ 1)] is positive, by Remark 13.57

iff [(b+ 2, a+ 2)] is positive, by Definition 13.48

iff b+ 2 > a+ 2, by Definition 13.62

iff b > a, by cancellation.

�

Theorem 13.65 shows that Z contains a “copy” of N
sitting inside it, and that this copy behaves exactly like N in
terms of addition, multiplication, and order. So from now
on, we will make no distinction between N and its identical
twin inside Z. Instead of writing [(22, 14)], for example,
we’ll simply call it by its usual name, that is, 8. This is
only the first of several such embeddings we’ll perform on
our journey from N to Z to Q to R to C.

Too Much Information 13.66. The proof of Theo-
rem 13.65 would have been a bit simpler if we had allowed
0 as a natural number. Then the embedding is the map
n 7→ [(n, 0)], and it’s immediate to show that addition and
multiplication are preserved.

Too Much Information 13.67. In this chapter, we
started with natural numbers, then created a new set (the
integers) via the equivalence relation ∼. What if we played
the same game all over again, this time using integers in
place of natural numbers? So we define two ordered pairs
(a, b) and (c, d) of integers to be equivalent iff a+d = b+c.
Then we form the set of all equivalence classes, and we
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define addition, multiplication, and everything else just as
we did before. Do we get an entirely new number system
this way? The answer is no. Your “new” number system
winds up being essentially the same as the integers. To see
that, you can embed Z into the new set the same way we
embedded N into Z. This time, however, the embedding
will be bijective, so a “copy” of Z will fill up the whole set.

More fundamentally, though, what’s going on is this.
The [(a, b)] construction allows us to do what we could not
do before: subtract. In other words, it guarantees that
the equation a = b + x always has a solution. Once those
equations always have solutions, repeating the construction
provides nothing new.

13.2.4. Exercises for Section 13.2. For each of these
exercises, when you are asked to prove something, you
may assume that the previous exercises have already been
proved, but not the later ones.

(1) Prove that addition of integers is well-defined.
(2) Prove the other properties.
(3) Prove that there does not exist a bijective function

f : N → Z such that f(a + b) = f(a) + f(b) for all
a, b ∈ N.

(4) Finish the proof of Theorem 13.55 by proving unique-
ness.

(5) In Definition 13.56, what kind of mathematical ob-
ject is −? Is it a set, a function, an operation, an
equivalence relation, or something else?

(6) In Definition 13.60, what kind of mathematical ob-
ject is −? Is it a set, a function, an operation, an
equivalence relation, or something else?

(7) Prove that Definition 13.62 is well-defined. That is,
prove that if [(a, b)] = [(c, d)], then [(a, b)] is positive
iff [(c, d)] is positive, and [(a, b)] is negative iff [(c, d)]
is negative.
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13.3. The rationals

In N, we could not always subtract, and so we con-
structed Z from N. We now face a similar situation, for
in Z, we cannot divide. To solve that problem, we will
construct Q from Z.

In the previous section, we created a solution to the
equation a = b + x by forming the ordered pair (a, b),
which we thought of as the integer a − b. To divide, we
want solutions to the equation n = mx. We’ll handle this
the same way, by forming the ordered pair (n,m), which
we think of as n/m. With integers, we wanted (a, b) and
(c, d) to be effectively the same when a − b = c − d, so
we declared those pairs equivalent iff a + d = b + c. We
reframed the condition this way because addition, unlike
subtraction, had already been defined for natural numbers.
This time, we want (n,m) and (r, s) to be essentially the
same iff n/m = r/s, which we rewrite as ns = mr, because
multiplication of integers has been defined, whereas divi-
sion has not. There’s one catch: we do not want to allow
division by zero. So in the ordered pair (n,m), we’ll allow
any n,m ∈ Z so long as m 6= 0.

Notation 13.68. Throughout this section, we define the
relation ∼ on Z× (Z \ {0}) by

(n,m) ∼ (r, s) iff ns = mr.

Too Much Information 13.69. Obviously, this ∼ is
not the same as the one from Notation 13.42. We’re done
with that one, so we are free to repurpose the ∼ symbol
here.
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Theorem 13.70. The relation ∼ is an equivalence rela-
tion on Z× (Z \ {0}).

Proof. Exercise 1. �

Definition 13.71. We define Q to be the set of equiv-
alence classes of the relation ∼ from Notation 13.68. Ele-
ments of Q are called rational numbers.

Too Much Information 13.72. We write a rational
number in the form [(n,m)]. We think of [(n,m)] as repre-
senting the rational number n/m.

Example 13.73. (1) Find three elements of Z× (Z\
{0}) that are equivalent to (−4, 6). Justify your
answer.

(2) List three elements of the rational number [(0, 5)].
Justify your answer.

(3) Is [(−2, 0)] a rational number? Why or why not?
(4) Intuitively, what rational number does [(10,−2)] rep-

resent?
Answers:
(1) The ordered pair (4,−6) is equivalent to (−4, 6),

because 4(6) = −6(−4).
The ordered pair (−2, 3) is equivalent to (−4, 6), because

−2(6) = 3(−4).
The ordered pair (−12, 18) is equivalent to (−4, 6), be-

cause −12(6) = 18(−4).
(2) The ordered pair (0, 5) is equivalent to (0, 5) by the

reflexive property. So (0, 5) is an element of the equivalence
class [(0, 5)].
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The ordered pair (0, 1) is equivalent to (0, 5), because
0(5) = 1(0). So (0, 1) is an element of the equivalence class
[(0, 5)].

The ordered pair (0,−47) is equivalent to (0, 5), because
0(5) = −47(0). So (0,−47) is an element of the equivalence
class [(0, 5)].

(3) No, [(−2, 0)] /∈ Q, because 0 /∈ Z \ {0}.
(4) It represents 10/(−2) = −5.

13.3.1. Operations on rational numbers. As with
Z, we now want to define the usual operations on Q. How
should we define [(n,m)] + [(r, s)]? We think of it as

n

m
+
r

s
=
ns+mr

ms
,

so we should define it to be [(ns + mr,ms)]. Note that
this uses only the previously defined concepts of addition
and multiplication of integers, so this definition is not cir-
cular. Similarly, for multiplication, we want (n/m)(r/s) =
nr/ms, so we define [(n,m)] · [(r, s)] = [(nr,ms)].

Definition 13.74. We define the binary operations +
and ·, called addition and multiplication, respectively, on
Q by

[(n,m)] + [(r, s)] := [(ns+mr,ms)], and

[(n,m)] · [(r, s)] := [(nr,ms)].

Theorem 13.75. Addition and multiplication are well-
defined on Q.

Proof. Exercise 2. �
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Like the integers, the rational numbers have an additive
identity.

Definition 13.76. We define 0 := [(0, 1)].

In the exercises, you will be asked to prove that 0 is
the unique additive identity for Q, as well as to prove that
Q possesses the properties listed in Tables 2, 4, and 6 in
Section 13.6.

In particular, in Exercise 3, you will show that every
rational number x has a unique additive inverse, which we
denote −x. As in Z, this allows us to define subtraction in
Q by x− y := x+ (−y).

What distinguished Q from Z is the ability to divide.
Just as additive inverses allow us to subtract, multiplicative
inverses make division possible.

Definition 13.77. We define 1 := [(1, 1)].

Too Much Information 13.78. Definitions 13.76 and
13.77 may seem circular, because we define 0 in terms of
0 and 1 in terms of 1. However, the zero on the left in
Definition 13.76 is the rational number 0, whereas the 0 on
the right is the previously defined integer 0. It’s similar for
1. Later, in Theorem 13.86, we will justify our recycling of
the 0 and 1 symbols.

In Exercise 4, you will prove that 1 is the unique multi-
plicative identity element for Q.

Theorem 13.79. Let x ∈ Q such that x 6= 0. Then
∃!y ∈ Q such that xy = yx = 1.
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Proof. Let x ∈ Q such that x 6= 0.
Then by definition of Q, we have that x = [(n,m)] for

some n,m ∈ Z, where m 6= 0.
Moreover, because x 6= 0, we know that n 6= 0.
Let y = [(m,n)].
Then xy = [(n,m)]· [(m,n)] = [(nm, nm)] = [(1, 1)] = 1.
From this, we get that yx = 1 by commutativity.

Now, we prove uniqueness.
Suppose, y, z ∈ Q such that xy = yx = 1 and xz =

zx = 1.
Then y = y · 1 = y(xz) = (yx)z = 1 · z = z. �

Too Much Information 13.80. Theorem 13.79 shows
that Q is not isomorphic to Z with respect to multiplica-
tion, because it is true for Q but not for Z. In fact, Q is not
isomorphic to Z with respect to addition, either, and here’s
why. For all x ∈ Q, there exists y ∈ Q such that y+ y = x.
But this statement becomes false when we change Q to Z.
Moreover, it is phrased entirely in terms of addition.

Theorem 13.79 tells us that every nonzero rational num-
ber has a unique multiplicative inverse. If x ∈ Q and x 6= 0,
then we denote the unique multiplicative inverse of x by
x−1.

Definition 13.81. Let x, y ∈ Q. We define the quo-
tient of x and y, denoted

x÷ y := x · y−1

Too Much Information 13.82. We will freely use
other standard notations for division, such as x/y.

Example 13.83. Use Definition 13.81 to compute [(4, 6)]÷
[(−10, 9)]. Then rewrite your answer using standard frac-
tion notation. (No need to reduce to lowest terms.)
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Answer:

[(4, 6)]÷ [(−10, 9)] = [(4, 6)] · [(−10, 9)]−1

= [(4, 6)] · [(9,−10)]

= [(36,−60)].

In standard fraction notation, we would write

4

6
÷ −10

9
=

4

6
· 9

−10
=

36

−60
.

13.3.2. Ordering the rationals. In Z, we defined the
ordering by first specifying which integers were positive,
then declaring n < m iff m− n is positive. We now do the
same for Q. So which rational numbers (n,m) should be
considered positive? Thinking of [(n,m)] as n/m suggests
that we should define [(n,m)] to be positive when n > 0 and
m > 0. But beware! We can represent 2/3, for example,
as [(2, 3)] or as [(−2,−3)], and we want to call it positive
both ways. So we need to be careful about the wording.

Definition 13.84. Let x ∈ Q. We say x is positive if
there exist positive integers n,m such that x = [(n,m)].

Example 13.85. Is [(−2,−3)] positive? Why or why
not?

Answer: Yes, [(−2,−3)] is positive, because [(−2,−3)] =
[(2, 3)], and 2 and 3 are positive integers.

As with Z, we define the relation < on Q by x < y iff
y − x is positive. Likewise, x ≤ y means that x < y or
x = y.

Tables 3, 5, and 7 in Section 13.6 list several properties
of the ordering on Q, and its relationship to addition and
multiplication.
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13.3.3. Embedding the integers in the rationals.
In the previous section, we defined an embedding of N into
Z, so that we could think of N as a subset of Z. Now, we
will embed the integers into the rationals.

How do we think of, say, the integer 47 as a rational
number? Easy—it’s 47/1, or more precisely, [(47, 1)]. This
suggests that the desired map is n 7→ [(n, 1)], and indeed,
that function does the trick.

Theorem 13.86. There exists a function f : Z → Q
such that for all a, b ∈ Z,

f(a+ b) = f(a) + f(b), and

f(a · b) = f(a) · f(b), and

a < b iff f(a) < f(b).

Proof. Exercise 5. �

Having established Theorem 13.86, we now abandon the
ordered pair notation for rational numbers. Instead, from
this point forward, we will write the rational number [(n,m)]
in the usual n/m notation. Moreover, we will regard the
integers as a subset of the rationals, in the usual way.

Too Much Information 13.87. In Theorem

Too Much Information 13.88. Why don’t we also
insist, in Theorem 13.86, that f also preserve subtraction?
That is, why not also require that f(a − b) = f(a) − f(b)
for all a, b ∈ Z? The reason is that subtraction comes for
free. Once we know that f preserves addition, then it will
necessarily preserve subtraction, too. See Exercise 6.

13.3.4. Exercises for Section 13.3. For each of these
exercises, when you are asked to prove something, you
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may assume that the previous exercises have already been
proved, but not the later ones.

(1) Prove Theorem 13.70.
(2) Prove Theorem 13.75.
(3) Prove that every rational number has a unique ad-

ditive inverse.
(4) Prove that 1 is the unique multiplicative identity

element for Q.
(5) Prove Theorem 13.86.
(6) Let f be as in Theorem 13.86. Prove that f(a−b) =

f(a)− f(b) for all a, b ∈ Z.

13.4. The reals

We’ve now constructed a set, Q, where we can subtract
and divide. Is there anything we can’t do in Q? Yes: we
can’t always take limits when we’d like to. For example,
consider the following sequence.

s1 = 1 +
1

1!

s2 = 1 +
1

1!
+

1

2!

s3 = 1 +
1

1!
+

1

2!
+

1

3!
...

sn = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
(11)

...

Notice that each term in this sequence is a rational
number. In Chapter 11, we showed that this sequence is
bounded and monotonic, so it should have a limit. How-
ever, we called the limit of this sequence e, and we proved
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s1 s2 s3 e

Figure 3. The sequence (sn) converges to an irrational number

that e /∈ Q. Visually, it’s as if Q has a “hole” in it where e
is supposed to be—see Figure 3.

How in the world do we define a real number like e,
when all we have to work with are rational numbers? The
ordered pair construction we used to define Z and Q was
helpful for creating inverse elements but is of no use to us
here.

There are many approaches one can take. In this chap-
ter, we use “Dedekind cuts” to define the real numbers.
In Section 13.7, we present an alternate approach using
“Cauchy sequences.” In fact, it doesn’t matter which one
we use to define R; the set of real numbers will have all the
same properties eiether way.

We return now to the sequence (sn) defined in equation
(11). The rational numbers in (sn) are less than e, yet
somehow they lead all the way up to e. The mathemati-
cian Richard Dedekind (1831–1916) proposed the following:
Why not consider the set of all rational numbers lass than
e? The elements of this set are shown as solid dots in Figure
4.

Notice that this set communicates exactly what we have
in mind—intuitively, we can think of its “right endpoint.”
In a similar way, we can specify any real number x, whether
it be π, 47, or −

√
2, in terms of Q by taking the set of all

rational numbers less than x.
One little problem: We can’t yet refer to real numbers,

because we have not yet constructed R. So how do we char-
acterize the sets we’re talking about while making reference
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e

Figure 4. A Dedekind cut

only to rationals? Look again at Figure 4. Notice that for
any point s in the solid-dot set A, every rational number to
the left of s is again in A. Also notice that some dots are
solid, but some are not; that’s because some rationals are
less than e, but some are not. Finally, notice that A does
not contain a maximum; given any solid dot, we can find
another solid dot to its right. (Remember that there are
infinitely many solid dots, so we can’t show all of them.)
These properties, it turns out, tell us exactly the kinds of
sets we’re looking for. See how each such set cuts the num-
ber line into two halves? For that reason, and in honor of
their creator, we call them Dedekind cuts.

Definition 13.89. Let A ⊆ Q. We say that A is a
Dedekind cut if:

(1) A 6= ∅, and
(2) Q \ A 6= ∅, and
(3) For all r, s ∈ Q, if s ∈ A and r < s, then r ∈ A, and
(4) If s ∈ A, then ∃t ∈ A such that s < t.

In words, (1) says that A is not empty; (2) says that the
complement of A is not empty; (3) says that A is “down-
ward closed”; and (4) says that A has no maximum.
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Too Much Information 13.90. In some other books,
a Dedekind cut is defined as a pair (A,B), where A is as in
Definition 13.89, and B is the complement of A.

Example 13.91. Let B = {x ∈ Q | x < 0}. (1) Is B
a Dedekind cut? Prove that your answer is correct. (2)
Intuitively, what real number does B represent?

Answers: (1) Yes, B is a Dedekind cut.

Proof. First, notice that −1 ∈ B and 1 ∈ Q \B.
So B 6= ∅ and Q \B 6= ∅.
Next, let r, s ∈ Q such that s ∈ B and r < s. We will

show that r ∈ B.
We know that s < 0, by definition of B.
So r < 0, because r < s and s < 0.
So s ∈ B, by definition of B.

Finally, let s ∈ B. We will show that ∃t ∈ B such that
s < t.

We know that s < 0, by definition of B.
So s/2 < 0.
Also, s/2 ∈ Q, because s ∈ Q.
So s/2 ∈ B, by definition of B.
Also, s < s/2, because s < 0.
Therefore, by Definition 13.89, we have that B is a

Dedekind cut. �

(2) When we draw a picture of B, we see that its “right
endpoint” is at 0. So B represents the real number 0.

Check for Understanding 13.92. Is {x ∈ Q | x > 0}
a Dedekind cut? Why or why not?

Example 13.93. Let C = {x ∈ Q | x ≤ 0}. Is C a
Dedekind cut? Prove that your answer is correct.
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Answer: No, C is not a Dedekind cut. Property (4) from
Definition 13.89 fails. Specifically, let s = 0. Then there
does not exist t ∈ C such that s < t.

Check for Understanding 13.94. Let D = {x ∈
Q | x2 < 2}. (1) Draw a picture of D. (2) Explain why
D is not a Dedekind cut. (3) Without referring to any
irrational numbers, how could you modify the definition
of D to represent the real number

√
2?

Example 13.95. Define the sequence (sn) as in equation
(11) on page 272. For each n ∈ N, define En = {x ∈
Q | x < sn}. Let E = ∪n∈NEn. Prove that E is a Dedekind
cut.

Scratch work: Before going on, draw a picture of the
sets En, so you can visualize what E looks like.

When we do a first attempt at this proof, we find that
the hardest part is proving that Q \ E is not empty. In
other words, we have to find an rational number that is
greater than or equal to sn for all n.

Each sn is a sum of terms of the form 1/j!.
So we look for numbers that are a little bigger than 1/j!,

but more manageable.
Because j! is in the denominator, we can get a bigger

number by replacing j! with something smaller.
Note that 1 · 2 · 3 · · · j ≥ 2j−1 for all natural numbers j.

Hence 1
j! ≤

1
2j−1 for all natural numbers j.
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So for all N ∈ N,

sn = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!

≤ 1 +
1

20
+

1

21
+

1

22
+ · · ·+ 1

2n−1

= 1 +
1− 1

2

n

1− 1
2

≤ 1 +
1

1− 1
2

= 3.

The powers of 2 gave us a geometric sum, which we could
then add up. This is a common trick.

Proof. First, we will show that E 6= ∅.
Note that 0 < 1 = s1.
Also, 0 ∈ Q.
So 0 ∈ E1, by definition of D1.
So 0 ∈ E, by definition of union.
So E 6= ∅.
Next, we will show that Q \ E 6= ∅.
We will show that 3 ∈ Q \ E 6= ∅.
〈Remember the scratch work. That’s where 3 is coming

from here.〉
We will show that for all ` ∈ N, we have that 3 /∈ E`.
Let ` ∈ N. We will show that 3 /∈ E`.
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We have that

s` = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

`!

≤ 1 +
1

20
+

1

21
+

1

22
+ · · ·+ 1

2`−1

= 1 +
1− 1

2

`

1− 1
2

≤ 1 +
1

1− 1
2

= 3.

So s` ≤ 3.
So 3 /∈ E`, by definition of E`.
Now, we will show that 3 /∈ E.
Temporarily assume that 3 ∈ E.
Then 3 ∈ En for some n ∈ N.
But we just showed that 3 /∈ E` for all ` ∈ N, so this is

a contradiction.
Therefore, 3 /∈ E.
We know that 3 ∈ Q.
So 3 ∈ Q \ E.
So Q \ E 6= ∅.
Next, let r, s ∈ Q such that s ∈ E and r < s. We will

show that r ∈ E.
We know that s ∈ En for some n ∈ N, by definition of

union.
So s < sn, by definition of En.
So r < sn, because r < s.
So r ∈ En, by definition of En.
Therefore r ∈ E, by definition of union.

Finally, let s ∈ E. We will show that ∃t ∈ E such that
s < t.
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We know that s ∈ En for some n ∈ N, by definition of
union.

So s < sn, by definition of En.
Let t = sn+1.
Then t = sn + 1/n! > sn.
So s < t.
We must show that t ∈ E.
We have that sn+2 = sn+1 + 1/(n+ 1)! > sn+1 = t.
So t < sn+2.
So t ∈ En+2, by definition of En+2.
So t ∈ E, by definition of union.
Therefore ∃t ∈ E such that s < t.

Therefore E is a Dedekind cut, by Definition 13.89. �

Definition 13.96. We define R to be the set of all
Dedekind cuts. Elements of R are called real numbers.

13.4.1. Operations on real numbers. Just as we did
for N, Z, and Q, our next task is to define the basic op-
erations and the ordering on R. We begin, as usual, with
addition. Given two real numbers (that is, two Dedekind
cuts) A and B, how should we define A+B? For example,
we want 2+3 = 5. The cut reprsenting 2 is {x ∈ Q | x < 2}.
It contains all rational numbers less than 2, but the ones
of most interest are those that lead right up to 2, such as
19/10 = 1.9 and 1999/1000 = 1.999. Similarly, the set
representing 3 contains 2.9, 2.99999, etc. Let’s see what
happens when we add those elements together.

1.9 + 2.9 = 4.8

1.999 + 2.99999 = 4.99899

Notice how the sums lead right up to 5? In fact, you can
check that the resulting set is {x ∈ Q | x < 5}, just what



13. THE STANDARD NUMBER SYSTEMS 280

we wanted. This suggests that we should define A + B as
the set of all sums a + b, where a ∈ A, b ∈ B. For this to
be a valid operation on R, first we must show that this new
set is in fact a Dedekind cut. In Exercise 2 you will do just
that, thereby justifying the following definition.

Definition 13.97. We define the operation + on R by

A+B := {a+ b | a ∈ A, b ∈ B}.

Like the integers and rationals, the set of real numbers
has an additive identity.

Definition 13.98. We define 0 := {x ∈ Q | x < 0}.

Recall that we showed in Example 13.91 that 0 is in fact
a real number. In Exercise 3, you will show that 0 is an
additive identity for R.

As with Z and Q, every element of R has an additive
inverse. To justify this, we’ll find a general formula for the
additive inverse of a Dedekind cut. Given a real number
A, it is tempting to define −A as {−x | x ∈ A}. However,
this set will be upward closed but not downward closed,
so it is not a Dedekind cut. The problem is that negation
reverses the order. To fix that problem, perhaps we should
define −A as the set of all negatives of rational numbers
not in A? That almost works, but consider the case A =
{x ∈ Q | x < 2}. Then our proposed set −A would be
{x ∈ Q | x ≤ −2}, which contains a maximum and is
therefore not a Dedekind cut. We can fix that by taking
−A to be the set of all rational numbers strictly less than
the negative of some rational number not in A.
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Definition 13.99. Let A be a Dedekind cut. We define

−A := {y ∈ Q | y < −x for some x ∈ Q \ A}.

In Exercise 4, you will prove that −A is the unique ad-
ditive inverse of A.

As usual, we define subtraction by A−B := A+ (−B).

Next, we define multiplication of Dedekind cuts. Your
first guess, quite reasonably, might be to take A · B =
{ab; | a ∈ A, b ∈ B}, à la addition. Well, let’s try it and see
what happens. Suppose A = {x ∈ Q | x < 2} represents
2, and B = {x ∈ Q | x < 3} represents 3. If our defini-
tion works properly, then we should have that A · B is the
Dedekind cut representing 6. Now, we have (1.99)(2.99) =
5.9501 and (1.999)(2.99999) ≈ 5.997. So far, so good—
these products seem to lead right up to 6. However, we
also have −4 ∈ A and −5 ∈ B, and (−4)(−5) = 20, which
is greater than 6. Uh-oh.

The problem is that multiplying by a negative reverses
the order. So let’s try again. To avoid the same trouble,
what if we multiply only the positive elements of A and
B? That is, what if we define A · B to be {ab | a ∈ A, b ∈
B, a > 0, b > 0}? For our example of 2 ·3, we wind up with
the set {x ∈ Q | 0 < x < 6}. That’s better, but there’s
still an issue—this set is not downward closed, so it’s not a
Dedekind cut.

This, too, is easily resolved. We can simply throw in
all the missing elements. In other words, we can take the
union of our previous set with the set of all nonnegative
rationals. Now, for 2 · 3, we get {x ∈ Q | x < 6}, which is
exactly what we want.

So we have the right definition now? Slow down. It
works great for positive numbers, but for negatives . . .
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not so much. Consider (−2)(−3), for example. This time,
A = {x ∈ Q | x < −2} and B = {x ∈ Q | x < −3}. So
when we take all positive elements of A times all positive
elements of B, we get the empty set, because A and B
have no positive elements. Solution: we already know how
to multiply positive reals, so simply define (−2)(−3) to be
2 · 3.

The plan for defining multiplication of Dedekind cuts,
then, will be the following. First, define the terms “posi-
tive” and “negative” for real numbers. Then define mul-
tiplication for positive real numbers. (In Exercise 5, you
will prove that the definition we finally settled on above in
fact yields a Dedekind cut.) Then define products involving
negatives in terms of products of positives, using Definition
13.99.

Definition 13.100. Let A be a Dedekind cut. We say
that A is positive if 0 ∈ A. We say that A is negative if
−A is positive.

Lemma 13.101 (Law of Trichotomy). Let A be a
Dedekind cut. Then exactly one of the following three pos-
sibilities holds: A is positive, A = 0, or A is negative.

Proof. Exercise 6. �

Too Much Information 13.102. The word “trichotomy”
means a splitting into three parts. Here, we split the set of
real numbers into negatives, zero, and positives.

Example 13.103. Let A = {x ∈ Q | x2 < 2 or x < −1}.
Is A positive, negative, or zero? (You may assume without
proof that A is a Dedekind cut.)
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Answer: Notice that 0 ∈ A, because 0 ∈ Q and 02 < 2.
So A is positive, by Definition 13.100. (By the way, A
represents the real number

√
2.)

Check for Understanding 13.104. For each state-
ment below, say whether it is true or false, and justify
your answer.

(1) Every positive Dedekind cut contains a positive ra-
tional number.

(2) Every negative Dedekind cut contains a positive
rational number.

(3) No negative Dedekind cut contains a positive ra-
tional number.

(4) No negative Dedekind cut contains 0.
(5) Every negative Dedekind cut contains a negative

rational number.
(6) Every positive Dedekind cut contains a negative

rational number.

Definition 13.105. We define the operation · on R by

A·B :=



{ab | a ∈ A, b ∈ B, a > 0, b > 0} ∪ {x ∈ Q | x ≤ 0}
if A and B are positive

−(A · (−B)) if A is positive and B is negative

−((−A) ·B) if A is negative and B is positive

(−A) · (−B) if A and B are negative

0 if A = 0 or B = 0

Lemma 13.101 assures us that this definition covers all
possible cases without any overlapping.

All the usual properties of addition and multiplication,
such as the commutative and distributive laws, hold for
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R as well. Tables 2, 4, and 6 in Section 13.6 list several
of these, and in the exercises, you will prove them. To
demonstrate the flavor of these proofs, we now prove the
distributive property for positive Dedekind cuts.

Example 13.106. Let A,B, and C be positive real num-
bers (i.e., Dedekind cuts). Prove that A · (B + C) =
A ·B + A · C.

Scratch work: The left- and right-hand sides of the equa-
tion are both Dedekind cuts, so they are sets. To prove two
sets are equal to each other, we usually show the left is a
subset of the right, then that the right is a subset of the left.
Towards that end, when we choose an arbitrary element of
the left-hand side, we want to use Definition 13.105. To do
so, we need to know which case we’re in. We know B and
C are both positive, so we suspect that B + C should also
be positive, which puts us in the first case. But we need to
justify that fact before using it. So that’s how we’ll begin.

Proof. First, we will show that A · (B + C) ⊆ A ·B +
A · C.

We are given that B and C are positive.
So 0 ∈ B and 0 ∈ C, by Definition 13.100.
So 0 = 0 + 0 ∈ B + C, by Definition 13.97.
So B + C is positive, by Definition 13.100.
So A · (B + C) = {ay | a ∈ A, y ∈ B + C, a > 0, b >

0} ∪ {x ∈ Q | x ≤ 0}, by Definition 13.105.
Let y ∈ A · (B+C). We will show that y ∈ A ·B+A ·C.
Then y ∈ {ax | a ∈ A, x ∈ B + C, a > 0, x > 0} or

y ∈ {x ∈ Q | x ≤ 0}, by definition of union.

Case 1: y ∈ {ax | a ∈ A, x ∈ B + C, a > 0, x > 0}.
Then y = ax for some a ∈ A, x ∈ B+C such that a > 0

and x > 0.
Now, B + C = {b + c | b ∈ B, c ∈ C}, by Definition

13.97.
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So x = b+ c for some b ∈ B, c ∈ C.
So y = a(b + c) = ab + ac, by the distributive property

for rational numbers.
〈Careful to avoid falling into a trap at this point. We

know that x is positive, but we don’t know that b and c are
positive! 〉

We will now show that ab ∈ A · B, whether b > 0 or
b ≤ 0.

If b > 0, then ab equals a positive element of A times a
positive element of B, so ab ∈ A ·B, by Definition 13.105.

On the other hand, if b ≤ 0, then ab ≤ 0, because a > 0.
In this case, ab ∈ {x ∈ Q | x ≤ 0}, so ab ∈ A · B, by
Definition 13.105.

Either way, we have that ab ∈ A ·B.
Similarly, ac ∈ A · C.
So y = ab+ ac ∈ A ·B + A · C, by Definition 13.97.

Case 2: y ∈ {x ∈ Q | x ≤ 0}
Then y is a nonnegative rational number.
We know that A,B, and C are positive, so by Definition

13.105, both A · B and A · C contain every nonnegative
rational number.

In particular, y ∈ A ·B, and 0 ∈ A ·B.
So y = y + 0 ∈ A ·B + A · C, by Definition 13.97.

In either case, we have y ∈ A ·B + A · C.
Therefore, A · (B + C) ⊆ A ·B + A · C.

Next, we will show that A ·B + A · C ⊆ A · (B + C).
Let y ∈ A ·B+A ·C. We will show that y ∈ A · (B+C).
By Definition 13.97, we know that y = z + w for some

z ∈ A ·B, w ∈ A · C.
By Definition 13.105, we know that either z = ab for

some a ∈ A, b ∈ B with a > 0 and b > 0, or else z ≤ 0.
Similarly, we know that either w = dc for some d ∈

A, c ∈ C with d > 0 and c > 0, or else w ≤ 0.
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Case 1: z = ab for some a ∈ A, b ∈ B with a > 0 and
b > 0, and w = dc for some d ∈ A, c ∈ C with d > 0 and
c > 0
〈When we add z + w, we get ab + dc. It would be nice

to apply the distributive property to factor out a, but we
can’t—we don’t know that a and d are the same number.
What we can do, though, is take advantage of the fact that
Dedekind cuts are downward closed. If a is larger, for exam-
ple, we can instead get that ab+ac = a(b+c) ∈ A ·(B+C),
then use downward closure.〉

WLOG assume that d ≤ a.
Then ab + dc ≤ ab + ac = a(b + c) ∈ A · (B + C),

by the distributive property for rational numbers, and by
Definition 13.105.

Therefore z + w = ab + dc ∈ A · (B + C) by Definition
13.89. (Specifically, we’re using here the fact that A·(B+C)
is a Dedekind cut and so is downward closed.)

Case 2: z = ab for some a ∈ A, b ∈ B with a > 0 and
b > 0, and w ≤ 0

By Definition 13.100, we know that 0 ∈ C, because C is
positive.

So b = b+ 0 ∈ B + C, by Definition 13.97.
So z = ab ∈ A · (B + C), by Definition 13.105.
Now, z + w ≤ z, because w ≤ 0.
So z+w ∈ A ·(B+C), by Definition 13.89. (Specifically,

we’re using here the fact that A · (B+C) is a Dedekind cut
and so is downward closed.)

Case 3: z ≤ 0, and w = dc for some d ∈ A, c ∈ C with
d > 0 and c > 0

Similar to Case 2.

Case 4: z ≤ 0 and w ≤ 0
Then z + w ≤ 0.
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By Definition 13.105, we have that 0 ∈ A·(B+C). (Here
we use the fact that B + C is positive, which we showed
earlier.)

So z+w ∈ A ·(B+C), by Definition 13.89. (Specifically,
we’re using here the fact that A · (B+C) is a Dedekind cut
and so is downward closed.)

In every case, we have that y = z + w ∈ A · (B + C).
Therefore A ·B + A · C ⊆ A · (B + C).

Therefore, A·(B+C) = A·B+A·C, because A·(B+C) ⊆
A ·B + A · C and A ·B + A · C ⊆ A · (B + C). �

Finally, we will define the standard ordering on R. We
could repeat our earlier trick: define A < B iff B−A is posi-
tive. That would give us exactly what we want. But there is
another, more elegant way to define the ordering. Consider,
for example, the two Dedekind cuts A = {x ∈ Q | x < 2}
and B = {x ∈ Q | x < 3}. Then A represents the real
number 2, and B represents the real number 3. We want
A < B. What can you say about the relationship of A to
B, as sets? Well, A is a subset of B. In general, because of
downward closure, Dedekind cuts representing larger num-
bers will contain those representing smaller numbers.

Definition 13.107. We define a relation ≤ on R by
A ≤ B iff A ⊆ B. We define < by A < B iff A ≤ B and
A 6= B.

13.4.2. Ordering the reals. As before, we’ll count on
you to supply the correct definitions for all related nota-
tions.

Check for Understanding 13.108. Prove that A is
positive iff A > 0.
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Tables 3, 5, 7, and 8 in Section ?? list several properties
of the ordering on R. In the exercises, you will be asked to
prove them.

One order property of the real numbers deserves special
attention. In the introduction to this chapter, we pointed
out that in the rationals, we cannot always take limits when
we ought to be able to. In Chapter 11, we saw that one
order property of R in particular make limits work the way
they’re supposed to. That key feature of the reals is the
least upper bound property. Before continuing, those of you
who did not cover that chapter should go back right now
and read Definitions 11.1 and 11.3. (And those of you who
did cover that chapter should review those definitions!)

We will prove that R has the least upper bound property,
also known as Dedekind completeness. This property states
that if a nonempty set of real numbers has an upper bound,
then it has a least upper bound. To understand this prop-
erty, let’s use a specific example to contrast the real to the
rationals, which are not Dedekind complete. Define (sn) by
equation (11) on page 272, and let S = {sn | n ∈ N}. Fig-
ure 3 on page 273 shows a picture of S. Clearly, S is not not
empty. Also, we showed in Example 13.95 that sn ≤ 3 for
all n ∈ N, so 3 is an upper bound for S. However, S does
not have a least upper bound in Q. The reason is that any
such least upper bound must be the limit of the sequence
(sn), but (sn) converges to e, which is not an element of Q.
In R, however, no problem—the least upper bound of S is
e.

For another example, let T = {x ∈ Q | x2 < 2}. The set
T is not empty, because 1 ∈ T . Also, x ≤ 5 for all x ∈ T ,
so 5 is an upper bound for T . But T has no supremum in
Q; its least upper bound is

√
2, which is irrational.

Given a set S of real numbers (i.e., of Dedekind cuts),
how do we find its least upper bound, if it has one? For
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example, take S = {sn | n ∈ N}, as before. Figure ??
shows the Dedekind cuts corresponding to the real numbers
s1, s2, and s3; you can imagine the other elements of S. The
smallest possible upper bound of S is e, as also shown in
Figure ??. How do we describe the set e in terms of the
sets sn? Figure ?? suggests an answer: take the union of
the sets sn.

Theorem 13.109 (Least Upper Bound Property). If a
nonempty subset of R has an upper bound in R, then it has
a least upper bound in R.

Proof. Suppose that S is a nonempty subset of R, and
that U ∈ R is an upper bound for S. We will show that S
has a least upper bound in R.

Let L = ∪A∈SA.
First, we will show that L is a Dedekind cut, so L ∈ R.

Then, we will show that L is a least upper bound for S.
〈Recall Definition 13.89. To show L is a Dedekind cut,

we have four things to show.〉
We know that S 6= ∅, so S contains at least one Dedekind

cut B.
By Definition 13.89, B 6= ∅.
Therefore, L 6= ∅.
Next, we will show that Q \ L 6= ∅.
We know that U is an upper bound for S.
So A ≤ U for all A ∈ S, by Definition 11.1.
So A ⊆ U for all A ∈ S, by Definition 13.107.
So L ⊆ U , because L = ∪A∈SA.
Now U ∈ R, so U is a Dedekind cut, and so by Definition

13.89, we know that Q \ U 6= ∅.
Therefore Q \ L 6= ∅, because L ⊆ U .
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Next, we will show that L is downward closed.
Let r, s ∈ Q such that s ∈ L and r < s. We will show

that r ∈ L.
By definition of union, s ∈ B for some B ∈ S.
Now, B is a Dedekind cut, so Definition 13.89 tells us

that B is downward closed.
So r ∈ B, by Definition 13.89.
Therefore r ∈ L, by definition of union.

Lastly, we will show that L has no maximum.
Temporarily assume that M is a maximum for L.
Then M ∈ L, and x ≤ M for all x ∈ L, by definition of

maximum.
Now, M ∈ L, so M ∈ B for some B ∈ L, by definition

of union.
But then M ∈ B and x ≤M for all x ∈ B.
So M is a maximum for B.
But B is a Dedekind cut, so by Definition 13.89, B has

no maximum.
Contradiction.
Therefore, L has no maximum.

So by Definition 13.89, we have that L is a Dedekind
cut. In other words, L ∈ R.

Next, we will show that L is a least upper bound for S.
〈Recall Definition 11.3. We must show two things.〉
First, we will show that L is an upper bound for S.
We know that A ⊆ L for all A ∈ S, because L = ∪A∈SA.
So A ≤ L for all A ∈ S, by Definition 13.107.
So L is an upper bound for S, by definition of upper

bound (Definition 11.1).

Finally, let K ∈ R be any upper bound of S. We will
show that L ≤ K.

We know that A ≤ K for all A ∈ S, by definition of
upper bound (Definition 11.1).
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So A ⊆ K for all A ∈ S, by Definition 13.107.
So L ⊆ K, because L = ∪A∈SA.
So L ≤ K, by Definition 13.107.

Therefore, by definition of least upper bound (Definition
11.3), L is a supremum for S. �

Too Much Information 13.110. Now we know that
R and Q cannot be isomorphic with respect to order, be-
cause by Theorem 13.109, the ordering on R is Dedekind
complete, whereas we saw earlier that for Q it is not. In
other words, there is no bijective function f : Q→ R such
that a ≤ b iff f(a) ≤ f(b). In fact, we proved in Chapter
9 that there is no bijective function whatsoever from Q to
R, because Q is countable, but R is not.

Too Much Information 13.111. Later on, in Theo-
rem 13.122, we will see that Dedekind completeness is, in
many ways, what makes the reals the reals.

13.4.3. Embedding the rationals in the reals. In
earlier sections, we embedded N into Z and Z into Q. It
should come as no surprise that we will next embed Q into
R, so that we can think of rational numbers as real num-
bers. So given a rational number r, which real number
(i.e., Dedekind cut) represents r? It’s nothing new; several
times throughout this section, we’ve used the Dedekind
cut {x ∈ Q | x < r} to represent r. This gives us pre-
cisely the embedding we want. We state this fact in The-
orem 13.112, whose proof we leave to you. In the proof
of Theorem 13.112, there are several things to check: that
{x ∈ Q | x < r} is in fact a Dedekind cut; that the map is
injective; and that addition, multiplication, and order are
preserved.
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Theorem 13.112. Define f : Q → R by f(r) = {x ∈
Q | x < r}. Then f is injective, and for all a, b ∈ Q,

f(a+ b) = f(a) + f(b), and

f(a · b) = f(a) · f(b), and

a < b iff f(a) < f(b).

Proof. Exercise 7. �

From now on, thanks to Theorem 13.112, we will regard
Q as a subset of R. For example, we may write −2/3 ∈ R,
where you should interpret −2/3 to mean the Dedekind cut
{x ∈ Q | x < −2/3}.

Too Much Information 13.113. You may have won-
dered why, in Definition 13.89, we insisted that a Dedekind
cut cannot have a maximum. Let’s see what goes wrong
if we eliminated (4) from that definition. Then both {x ∈
Q | x < 2} and {x ∈ Q | x ≤ 2} would be distinct Dedekind
cuts, for example. But they would both represent the num-
ber 2! In fact, every rational number would appear twice—
once in the < cut, and once in the ≤ cut. We prefer to
have each rational number appear exactly once in R, so we
set up our definition accordingly.

Too Much Information 13.114. Why don’t we also
insist, in Theorem 13.112, that f also preserve subtraction
and division? That is, why not also require that f(a− b) =
f(a) − f(b) for all a, b ∈ Q, and that f(a/b) = f(a)/f(b)
for all a, b ∈ Q such that b 6= 0? The reason is that sub-
traction and division come for free. Once we know that
f preserves addition and multiplication, then it will neces-
sarily preserve subtraction and division, too. See Exercise
8.
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13.4.4. Exercises for Section 13.4. For each of these
exercises, when you are asked to prove something, you
may assume that the previous exercises have already been
proved, but not the later ones.

(1) Define the sequence (pn) by

pn =
n∑

j=1

(−1)j+1

2j − 1
.

For each N ∈ N, define Pn = {x ∈ Q | x < pn}.
Let P = ∪n∈NPn. Prove that P is a Dedekind cut.
(You may be interested to know that P represents
the real number π/4.)

(2) Prove that if A and B are Dedekind cuts, then {a+
b | a ∈ A, b ∈ B} is a Dedekind cut.

(3) Prove that the real number 0 defined in Definition
13.98 is an additive identity for R.

(4) Prove that the Dedekind cut −A from Definition
13.99 is the unique additive inverse of the Dedekind
cut A.

(5) Prove that if A and B are positive Dedekind cuts,
then {ab | a ∈ A, b ∈ B, a > 0, b > 0}∪{x ∈ Q | x ≤
0} is a Dedekind cut.

(6) Prove Lemma 13.101.
(7) Prove Theorem 13.112.
(8) Let f be as in Theorem 13.112. Prove that f pre-

serves subtraction and division, too. In other words:
(a) Prove that f(a−b) = f(a)−f(b) for all a, b ∈ Q.
(b) Prove that f(0) = 0.
(c) Prove that f(a/b) = f(a)/f(b) for all a, b ∈ Q

such that b 6= 0.

13.5. The complex numbers

At long last, we arrive at our final destination: the com-
plex numbers. Having just constructed R, our goal is to use
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it to construct C. We want to be able to write a complex
number in the form a + bi, where a, b ∈ R. The a and b
are no problem. The question is, what exactly is i? Recall
from Remark 13.1 that we will not allow i =

√
−1 as a

definition. Instead, the answer is: don’t worry about it.
To specify a+ bi, all we really need is the pair of numbers
a and b. Should we use the set {a, b} or the ordered pair
(a, b)? To answer that question, we ask ourselves: does or-
der matter? Well, yes. We need to know which one is the
real part, and which goes with i. So we will define C as the
set of all ordered pairs of real numbers. In other words, it
will be the Cartesian product R× R.

Definition 13.115. We define

C := R× R.
An element of C is a complex number.

Technically, then, a complex number is an ordered pair
(a, b), where a, b ∈ R. We think of (a, b) as the complex
number a+bi. Later, we will justify the use of this notation.

Example 13.116. (1) In the usual a + bi notation,
what complex number does (2,−3) represent?

(2) Represent the complex number 1
2i−

√
3

2 as an ordered
pair.

(1) It represents 2− 3i.

(2) We have 1
2i −

√
3

2 = −
√

3
2 + 1

2i, so we represent it

as (−
√

3/2, 1/2). (Note that we put the real part
first—order matters.)

We now define addition and multiplication on C. In the
usual notation, we want to have

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i, and
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(a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i,

because we want i2 = −1 to be true, along with the usual
properties of addition and multiplication. These desired
equations, then, lead to the following definition.

Definition 13.117. We define the operations + and ·
on C by

(a, b) + (c, d) := (a+ c, b+ d), and

(a, b) · (c, d) := (ac− bd, ad+ bc).

In the exercises, you will verify that addition and mul-
tiplication of complex numbers satisfy the properties listed
in Tables 2, 4, and 6. We define subtraction and division
just as we did for Q and for R.

We want to be able to write i = 0+1 · i, and so we make
the following definition.

Definition 13.118. We define the complex number i by

i := (0, 1).

Also, we want to be able to think of R as a subset of
C. Another embedding theorem is in order. We want to
represent a real number x as x + 0 · i. This suggests the
map x 7→ (x, 0).

Theorem 13.119. Define f : R → C by f(x) = (x, 0).
Then f embeds R into C in a way that preserves addition
and multiplication. In other words, f is injective, and for
all a, b ∈ R,

f(a+ b) = f(a) + f(b), and
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f(ab) = f(a)f(b).

Proof. Exercise ??. �

Thanks to Theorem 13.119, we will write real numbers
in the usual way from now on. For example, instead of
(−47, 0), we will simply write −47. The notation a + bi,
where a, b ∈ R, really does mean (a, b), then, because

a+ bi = (a, 0) + (b, 0)(0, 1) by Definition 13.118

= (a, 0) + (0, b) by Definition 13.117

= (a, b) by Definition 13.117.

The special property of i is the equation i2 = −1. This
holds because

i2 = (0, 1) · (0, 1) by Definition 13.118

= (−1, 0) by Definition 13.117

= −1.

We previously defined orderings on N,Z,Q, and R, and
proved in the exercise that they have the properties listed
in Tables 3, 5, 7, and 8. However, there is no ordering on
C that maintains these properties. Here’s a quick sketch
of the proof. Suppose that ≤ was such an ordering. Then
i ≤ 0 or i ≥ 0. Either way, you get i2 ≥ 0, a contradiction.

Finally, we cannot leave this section without mentioning
the most remarkable property of C, at least insofaras ad-
dition and multiplication are concerned. This is the Fun-
damental Theorem of Algebra. (You know a theorem is
significant when it’s called “fundamental”!) The Funda-
mental Theorem of Algebra states that every nonconstant
polynomial with coefficients in C has a root in C.
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Theorem 13.120. [Fundamental Theorem of Alge-
bra]Let n ∈ N, and let a0, a1, . . . , an ∈ C such that an 6= 0.
Then there exists x ∈ C such that

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0.

The proof of Theorem 13.120 is beyond the scope of this
textbook, but not beyond the scope of your undergraduate
career. As is often the case with a major result, there are
many proofs of the Fundamental Theorem of Algebra. If
you take a class in Complex Analysis, you will most likely
see a proof of it, or perhaps several. You may see another
proof in a Topology class. An Abstract Algebra class that
covers Galois theory may present yet another proof.

Too Much Information 13.121. Looking back over
this entire chapter, you can see just how much work it took
to define complex numbers. According to our formal defi-
nitions, a complex number is an ordered pair of real num-
bers, which are Dedekind cuts of rational numbers, which
are equivalence classes of ordered pairs of integers, which
are equivalence classes of ordered pairs of natural numbers,
each of which can be expressed in terms of the undefined
symbols S and 1. It would be quite a task to untangle all
these definitions to write, say, −(1/2) + (

√
3/2)i in terms

of S and 1.

13.5.1. Exercises for Section 13.5. For each of these
exercises, when you are asked to prove something, you
may assume that the previous exercises have already been
proved, but not the later ones.

(1) Prove properties in tables. For the appropriate ex-
ercise, recall as a hint the “multiply by the conju-
gate” trick for finding the multiplicative inverse of
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Props Props
Table 2. Table with addition and multiplication prop-
erties for N, Z, Q, R, C

Props Props
Table 3. Table with order properties for N, Z, Q, R

Props Props
Table 4. Table with addition and multiplication prop-
erties for Z, Q, R, C

a nonzero complex number:

1

a+ bi
=

a− bi
(a+ bi)(a− bi)

=
a− bi
a2 + b2

.

(2) Prove Theorem ??.

13.6. Properties of the number systems

In this section, we
Addition and Multiplication Props of N, Z, Q, R, C
Order Props of N, Z, Q, R
Addition and Multiplication Props of Z, Q, R, C
Order Props of Z, Q, R
Multiplication Prop of Q, R, C (inverses)
Order Prop of R (completeness)
Addition and Multiplication Prop of C: FTA
Remark that the proof of FTA is nontrivial.
Group, abelian group, ring, commutative ring, commu-

tative ring with unity, field, ordered field, complete ordered
field, algebraically complete field.
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Props Props
Table 5. Table with order properties for Z, Q, R

Props Props
Table 6. Table with addition and multiplication prop-
erties for Q, R, C

Props Props
Table 7. Table with order properties for Q, R

Props Props
Table 8. Table with order properties for R

Note on which of N, Z, Q, R, C is which. Note that R
is the unique complete ordered field.

above: include archimdean property
Above table: mult. inverses
Above table: intermediate value property
Above table: least upper bound property

Theorem 13.122.

NOTE THAT Q IS AN ORDERED FIELD BUT NOT
ISOM TO R. SO ORDERED FIELD AXIOMS ARE NOT
ENOUGH TO CHARACTERIZE THE SET.

13.7. Cauchy sequences

Instead, we turn to a brilliant idea developed by several
mathematicians throughout the 19th century. Namely, we
use the sequence (sn) itself to define e. So our first attempt
at a definition of R is the set of all sequences of rational
numbers that in some sense “should” converge.
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We do not want every sequence to converge. For exam-
ple, the sequence 1, 2, 3, . . . should be divergent. How do
we determine which sequence of rational numbers should
converge, and which should not? The sequence (sn) above,
for example, should converge to e; perhaps we should use
the definition of the limit of a sequence to say that (sn)
is convergent because for all ε > 0, there exists M ∈ N
such that if k ≥ M , then |sk − e| < ε? Not so fast. We’ve
constructed only rational numbers up to this point, so re-
ferring to e is illegal. Somehow, we must decide that (sn) is
convergent without mentioning anywhere what it converges
to.

Towards that end, here comes the next brilliant idea.
Rather than say that (sn) converges if its terms eventually
become arbitrarily close to some limit, we observe that it
converges iff its terms eventually become arbitrarily close
to each other.

Definition 13.123. Let (an) be a sequence of rational
numbers. We say that (an) is Cauchy if for all ε ∈ Q such
that ε > 0, there exists M ∈ N such that if j, k ∈ N and
j ≥M and k ≥M , then |aj − ak| < ε.

Here’s what Definition 13.123 says in words: To be a
Cauchy sequence, we must have that for any given toler-
ance, there is a point in the sequence such that past that
point, the distance between any two terms in the sequence
is within the specified tolerance. The tolerance is ε. The
point in the sequence we must go past in M . The distance
between the two terms beyond that point is |aj − ak|.

Too Much Information 13.124. Recall that a se-
quence of rational numbers is really a function from N to
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Q, and that both of these sets have now been constructed.
So this is a valid definition.

Too Much Information 13.125. In an Analysis class,
you will learn that in the definition of a Cauchy sequence,
we can take any ε > 0, where ε ∈ R. However, we are in
the process of defining R, so we can not yet use R in any
definitions. In fact, you will learn a much more general
definition of Cauchy sequence.

Too Much Information 13.126. INSERT A HISTOR-
ICAL NOTE ON AUGUSTIN CAUCHY HERE.

Too Much Information 13.127. In the standard Eng-
lish pronunciation of the French name “Cauchy,” the first
syllable is “co” as in “code” or “commingle,” and the sec-
ond syllable is “she” as in “sheep” or the pronoun “she.”
When you say this word, you should not sound as if you
are talking about a piece of furniture: please do not say
“couchy”!

Example 13.128. Define the sequence (an) by an = n.
Is (an) a Cauchy sequence? Prove or disprove.

Scratch work: The terms of this sequence are 1, 2, 3, . . .
Given any tolerance, can we always find a point in the
sequence so that from that point on, the distance between
any two terms is within that tolerance? No, certainly not.
The distance between any two distinct terms is never less
than 1. So set the tolerance ε = 1/2. Then no matter
how far into the sequence you go, the distance between two
consecutive terms is never less than ε.

Claim: The sequence (an) is not Cauchy.

Proof. We will show that it is false that for all ε ∈ Q
such that ε > 0, there exists M ∈ N such that if j, k ∈ N
and j ≥M and k ≥M , then |aj − ak| < ε.

We will show that ε = 1/2 is a counterexample.
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Note that ε ∈ Q and ε > 0.
We will show that there does not exist M ∈ N such that

if j, k ∈ N and j ≥M and k ≥M , then |aj − ak| < ε.
Temporarily assume that there exists M ∈ N such that

if j, k ∈ N and j ≥M and k ≥M , then |aj − ak| < ε.
Let j = M and k = M + 1.
Then j, k ∈ N and j ≥M and k ≥M .
So |aj − ak| < ε = 1/2.
However, |aj − ak| = |aM − aM+1| = |M − (M + 1)| = 1.
We get 1 < 1/2, which is a contradiction.
Therefore there does not exist M ∈ N such that if j, k ∈

N and j ≥M and k ≥M , then |aj − ak| < ε.
Therefore ε = 1/2 is a counterexample.
Therefore (an) is not Cauchy. �

Example 13.129. Define the sequence (an) by an =
2−n+1.

(1) Let ε = 2/5 and M = 2. Is it true that if j, k ∈ N
and j ≥ M and k ≥ M , then |aj − ak| < ε? Prove
it or find a counterexample.

(2) Let ε = 2/5 and M = 3. Is it true that if j, k ∈ N
and j ≥ M and k ≥ M , then |aj − ak| < ε? Prove
it or find a counterexample.

(3) Let ε = 1/1000. Prove that there exists M ∈ N
such that if j, k ∈ N and j ≥ M and k ≥ M , then
|aj − ak| < ε.

(4) Is (an) a Cauchy sequence? Prove or disprove.

Answers:

(1) No, that is false. For example, let j = 2 and k = 4.
Then |aj − ak| = |1/2 − 1/16| = |7/16| = 0.4375,
which is not less that 2/5.

(2) Scratch work: Let’s start computing some examples
to try to get the idea of whether this is true or not.
We have |a3 − a4| = |1/4 − 1/8| = 1/8 < 2/5. We
have |a4− a7| = |1/8− 1/64| < 1/8 < 2/5. We have
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|a10 − a12| = |2−9 − 2−12| < 2−9 < 2/5. It looks as
if this is true: we can bound |aj − ak| by the larger
term, which is no more than 1/4 when j, k ≥ 3.

Proof. Let j, k ∈ N such that j ≥ M and k ≥
M . We will show that |aj − ak| < ε.

WLOG assume that j ≤ k.
Then aj = 2−j+1 ≥ 2−k+1 = ak.
Also, aj = 2−j+1 ≤ 2−3+1 = 1/4.
So |aj − ak| = aj − ak ≤ aj ≤ 1/4 < 2/5. �

(3) Scratch work: We must find a point in the sequence
such that from that point on, the distance between
any two terms of the sequence is less than 1/1000.
The previous part of this example gives us an idea:
find a term in the sequence that’s less than 1/1000.
(Warning: This trick works for this example, but
it does not always work.) We have 210 = 1024, so
a11 = 1/1024 < 1/1000. So take M = 11.

Proof. Let M = 11.
Let j, k ∈ N such that j ≥ M and k ≥ M . We

will show that |aj − ak| < ε.
WLOG assume that j ≤ k.
Then aj = 2−j+1 ≥ 2−k+1 = ak.
Also, aj = 2−j+1 ≤ 2−11+1 = 1/1024.
So |aj − ak| = aj − ak ≤ aj ≤ 1/1024 < ε. �

(4) Scratch work: Intuitively, (an) is a Cauchy sequence,
because it is convergent. (It converges to 0.)

Now, let’s figure out how to prove that. Given a
rational number ε > 0, we must find a point in the
sequence such that from that point on, the distance
between any two terms of the sequence is less than
ε. The previous part of this example gives us an
idea: find a term in the sequence that’s less than ε.
So choose M to be large enough such that aM < ε.
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In other words, we need 2−M+1 < ε. That is, we
need 2M−1 > 1/ε. It is straightforward to show by
induction that 2M−1 ≥M for all M ∈ N. So we can
just choose M > 1/ε.

Claim: The sequence (an) is Cauchy.

Proof. Let ε ∈ Q such that ε > 0.
We will show that there exists M ∈ N such that

if j, k ∈ N and j ≥M and k ≥M , then |aj−ak| < ε.
Choose M ∈ N such that M > 1/ε. (This is

possible by the Archimedean property—see Table
3.)

Then 2M−1 ≥M > 1/ε, so aM = 2−M+1 < ε.
Let j, k ∈ N such that j ≥ M and k ≥ M . We

will show that |aj − ak| < ε.
WLOG assume that j ≤ k.
Then aj = 2−j+1 ≥ 2−k+1 = ak.
Also, aj = 2−j+1 ≤ 2−M+1 < ε.
So |aj − ak| = aj − ak ≤ aj < ε. �

POINT OUT THAT BY Theorem 13.122, CAUCHY
SEQUENCES GIVE US A COMPLETE ORDERED FIELD
AND SO ARE EQUIVALENT TO DEDEKIND CUTS.
REMARK THAT THEY GENERALIZE IN DIFFERENT
WAYS.

13.8. Fun math facts

Axioms for set theory. Mention ZFC. State informal ver-
sion of Lawvere’s axioms, refer to the “Rethinking Set The-
ory” article. Mention independence of choice, CH (Godel,
Cohen).

Comment on how the axiomatic method works in gen-
eral, undefined terms, axioms. Note connection to Eu-
clidean geometry: point, line, plane, etc. History (indepen-
dence of parallel postulate, Hilbert’s work). Hilbert quote.
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Other number systems: quaternions, octonions, sedo-
nions, etc. See Which Numbers are Real? book for more
examples.

What’s the point of having these number systems? Arise
naturally from solving problems, are convenient. Need R
for geometry—Pythagoras shows Q is not good enough. C
arises naturally from solving polynomials, note history of
cubic.

Apparently Dedekind came up with a definition of the
reals in the process of preparing for a Calculus class. He
was trying to prove everything rigorously but got stuck at
the Intermediate Value Theorem because the reals had not
been properly defined.


