

Logarithms: Trick or Treat?

Physics Colloquium Cal State LA October 31, 2019

The time is 1594. The place is Scotland.

You are visiting with John Napier, 8th Laird of Merchiston.

He is a Scottish landowner known as a mathematician, physicist, and astronomer

How did Napier do Math?

Physics and astronomy computations involved sine and cosine functions

Useful tool:

$$\cos a \cos b = rac{\cos(a-b) + \cos(a+b)}{2}$$

Multiplication is replaced by addition!

Problem: Find 105×720.

- 1. Scale values to interval [-1,1]: 0.105 and 0.720
- 2. Find angles whose cosines are close to those values: $\cos 84^\circ \approx 0.105$ and $\cos 44^\circ \approx 0.720$
- 3. Calculate sum and difference of these angles:

 $84^{\circ} - 44^{\circ} = 40^{\circ}$ and $84^{\circ} + 44^{\circ} = 128^{\circ}$

4. Find cosine values and average them:

 $\cos 40^{\circ} \approx -0.616$ and $\cos 128^{\circ} \approx 0.766$ $\frac{1}{2}(\cos 40^{\circ} + \cos 128^{\circ}) \approx 0.075$

- 5. Scale back by shifting 6 decimal places to the right to obtain 75,000
- 6. Actual answer is 75,600

How did Napier do Math?

Arithmetic and geometric progressions

Arithmetic	0	1	2	3	4	5
geometric	1	10	100	1,000	10,000	10,0000
Arithmetic	0	1	2	3	4	5
geometric	1	2	4	8	16	32
Arithmetic	0	1	2	3	4	5
geometric	1	1.1	1.21	1.331	1.4641	1.61051

Observations:

- Multiplying numbers with the same base reduces to addition
- Dividing numbers with the same base reduces to subtraction
- A base close to 1 makes for a list of values with smaller gaps between them

Naperian Logarithms

• Napier choose $0.9999999 = 1 - 10^{-7}$ as the base

- Had factor of 10⁷ to create integers for his computations

NapLog(N) = L if $N = 10^7 (0.9999999)^L$

$$\begin{split} \operatorname{NapLog}(\sqrt{N_1N_2}) &= \frac{1}{2} \left(\operatorname{NapLog} N_1 + \operatorname{NapLog} N_2 \right) \\ \operatorname{NapLog}(10^{-7}N_1N_2) &= \operatorname{NapLog} N_1 + \operatorname{NapLog} N_2 \\ \operatorname{NapLog}\left(10^7 \frac{N_1}{N_2} \right) &= \operatorname{NapLog} N_1 - \operatorname{NapLog} N_2 \end{split}$$

 He labored for a total of 20 years to develop the idea and to create tables

LOC	GARITHMORV	M
	NONIS DESCRIPTIO,	ides
ARITH	METICARVM SVPPVTATION AIRABILIS ABBREVIATIO.	×
<i>Eiufque vfi</i> Logi	us in vtraque Trigonometria est etiam in Altea Mathematica, amplifimi, facilimi e expeditifimi explicatio.	omni F
E	ac Inuentore IOANNE NEPE Barone Merchiltonij, &c. Scoтo.	RO,
- 11	Bitt of the Callo	
0,70	16 46	
Apu	LVGDVNI, Id Barth.Vincentiu	m.
P -	M. D.C. X X.	
Cum Prin	uilegio Cafar.Majeft.& Chrift.Galliarum R	eais.
CHINITH	attegio Cajar. Ontajeji. O Corrit. Gautarum K	egis.

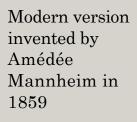
Gr. 30								
30 min	Sinus	Logarithmi	Differentie	log arithmi (Simut			
0	\$000000	6931469	\$493059	1438410	8660254			
	\$001\$19	6926432	\$486342	1440090	8658799			
	\$00\$038	6921399	\$479628	1441771	8657344			
345	\$037556	6916369	\$472916	1443453	8655888			
	5010074	6911342	\$465206	1445136	8654431			
	5012591	6906319	\$4\$9498	1446821	8652973			
6 78	5015108	6901299	\$4\$2792	1448507	8651514			
	5017624	6896282	\$446088	1450194	8650055			
	5020140	6891269	\$439387	1451882	8648595			
9	5022656	6886259	5432688	1453571	8647134			
10	5025171	6881253	5425992	1455261	8645673			
11	5027686	6876250	5419298	1456952	8644211			
12	5030200	6871250	\$412605	1458645	8641748			
13	5032714	6866254	\$405915	1460339	3641284			
14	5035227	6861261	\$399227	1462034	8639810			
15	5037740	6856271	\$392541	1463730	8638355			
16	5040153	6851285	\$385858	1465417	8636889			
17	5042765	6846302	\$379177	1467125	8635423			
18	5045277	6841323	\$372499	1468824	8633956			
19	5047788	6836347	\$365822	1470525	8632488			
20	5050299	6831374	\$359147	1472227	8631019			
21 22 23	\$0\$1809	6826405	\$352475	1473930	8629549			
	\$0\$5319	6821439	\$345805	1475634	8628079			
	\$0\$7829	6816476	\$339137	1477339	8626608			
24	\$060338	6811516	5332471	1479045	8625137			
25	\$062847	6806560	5325808	1480752	8623665			
26	\$06\$355	6801607	5319147	1482460	8622192			
27	5067863	6796657	5312488	1484169	8620718			
28	5070370	6791710	5305831	1485879	8619243			
29	5072877	6786767	5299177	1487590	8617768			
30	\$075384	6781827	\$292525	1489302	8616292			
59								

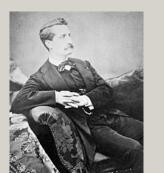
Mirifici Logarithmorum Canonis Descriptio, 1614

Common Logarithms

- Both in 1615 and 1616, Henry Briggs, an English Mathematician, visited with Napier to discuss his new invention
- Napier and Briggs agreed on improvements: base 10 and 0 = Log(1).
- In 1617, Briggs published *Logarithmorum* Chilias Prima, which contained the logarithms to base 10 of numbers from 1 to 1,000, calculated to 14 decimal places.
- In 1624, Briggs published the Arithmetica Logarithmica, which contained tables of logarithms from 1 to 20,000 and from 90,001 to 100,000, calculated to 14 decimal places.

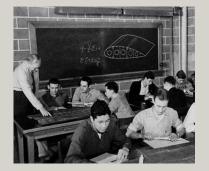
SIVE


LONDINL Excudebat GVLIELMVS IONES. 1614

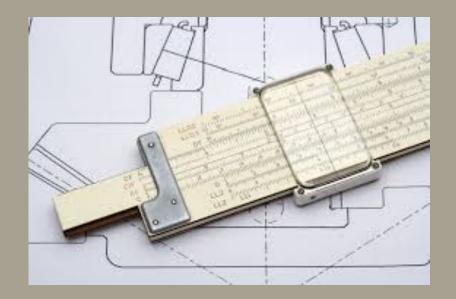

The Slide Rule

5 March 1574-30 June 1660

Invented in 1622 by by William Ougthred



17 July 1831 - 11 Dec 1906

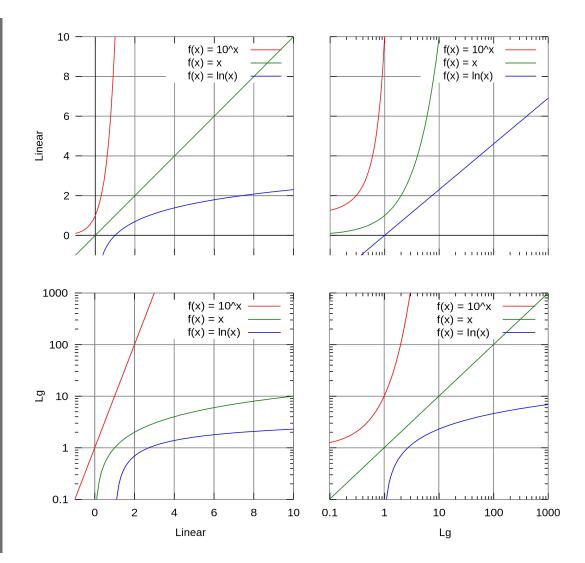


Before the electronic calculator, the most commonly used calculation tool in science and engineering.

Primarily for multiplication, division, powers, roots, and trigonometry, with specialized versions for aviation, finance,...

Became obsolete around 1974 with the introduction of the handheld electronic scientific calculator.

Pull ou your slide rules

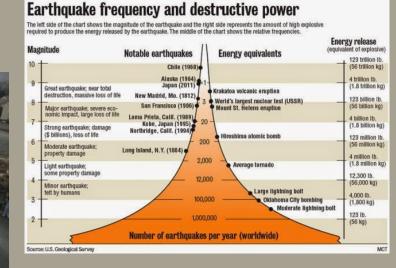

Log Scale versus Linear Scale

1,000,000

Where on this scale is 1,000?

1

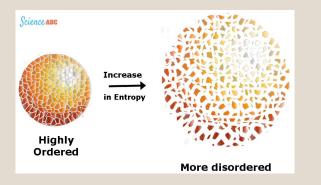
Linear scale does not work so well when we have data that is very different in (multiplicative) scale.

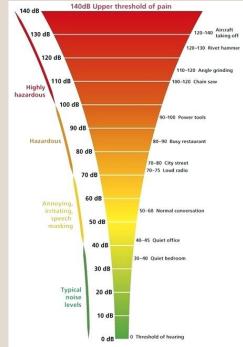


Logarithmic scale versus linear scale

Applications in STEM disciplines

Richter magnitude scale and moment magnitude scale (MMS) for strength of earthquakes and movement in the earth

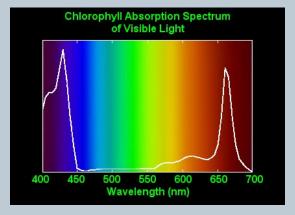



Applications in STEM disciplines

Entropy in Thermodynamics

 $\mathbf{S} = \mathbf{k}_{\mathrm{B}} \ln \Omega$

Sound intensity $I = 10 \log_{10} \left(\frac{I}{I_0}\right)$



Applications in STEM disciplines

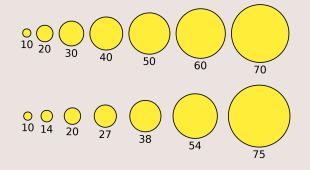
Stellar magnitude for brightness

 $m - m_r = -2.5 \log_{10} \left(\frac{l_1}{l_r} \right)$

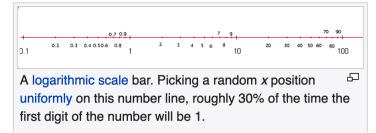
Absorbance of light $A = \log_{10} \left(\frac{\Phi_e^i}{\Phi_e^t} \right)$

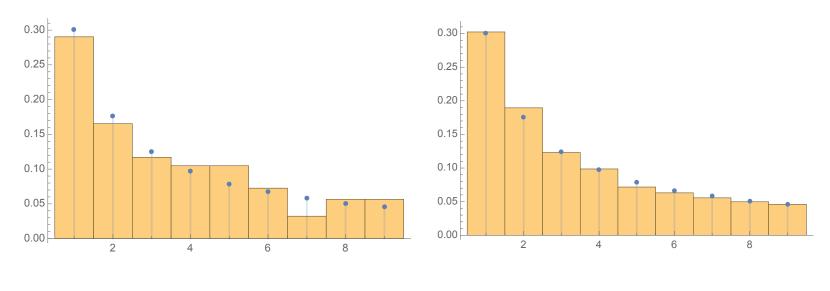
and more

Applications in other disciplines


Frequency level for the relative pitch of notes in music scale

Counting fstops for ratios of photographic exposure


Some of our senses operate in a logarithmic fashion (Weber–Fechner law)


Benford's Law

- In 1881, Newcomb observed that in tables of logarithms the first pages are much more worn than later pages
- In 1938, Benford investigated a variety of real data and listed the distributions of the first digits.
- Observations closely followed this "law"

$$P(d) = \log_{10}(d+1) - \log_{10}(d)$$
$$= \log_{10}\left(\frac{d+1}{d}\right)$$

• **TV trivia**: Benford's law was used by the character Charlie Eppes as an analogy to help solve a series of high burglaries in Season 2 of *NUMB3RS*.

world countries

US counties

Benford's Law for first digits of populations

- <u>https://en.wikipedia.org/wiki/John Napier</u>
- <u>https://www.britannica.com/biography/John-Napier#ref241319</u>
- <u>https://www.youtube.com/watch?v=dT7bSn03lx0</u> (training video for slide rule operation)
- https://en.wikipedia.org/wiki/Slide_rule
- <u>https://en.wikipedia.org/wiki/Prosthaphaeresis</u>
- <u>http://mathworld.wolfram.com/BenfordsLaw.html</u>
- <u>https://archive.org/details/constructionofwo00napiuoft/page/n8</u> (English translation of Napier's second book)
- https://en.m.wikipedia.org/wiki/Logarithmic scale
- Newcomb, S. "Note on the Frequency of the Use of Digits in Natural Numbers." *Amer. J. Math.* 4, 39-40, 1881
- Hill, T. P. "The First Digit Phenomenon." Amer. Sci. 86, 358-363, 1998.
- Benford, F. "The Law of Anomalous Numbers." Proc. Amer. Phil. Soc. 78, 551-572, 1938.
- Eli Maor, e: The story of a number

Photo Credit

- <u>https://www.thoughtco.com/history-of-the-slide-rule-1992408</u>
- <u>https://www.sliderulemuseum.com/</u>
- <u>http://endgameviable.com/a-year-of-blog-stats/500004176-03-01/</u>
- <u>https://en.wikipedia.org/wiki/Slide_rule</u>
- <u>https://www.scienceabc.com/wp-</u> <u>content/uploads/2016/11/Entropy.jpg</u>
- <u>http://www.pmonta.com/tables/logarithmorum-</u> <u>chilias-prima/index.html</u>

Log-Lin Scale for Exponential phenomena

- $y = y_0 b^x$ Take logs on both sides
- $\ln y = \ln y_0 + x \ln b$ Set $c_1 = \ln y_0, c_2 = \ln b, z = \ln y$
 - $z = c_1 + c_2 \cdot x$ ln y is a **linear** function of x

Can use linear regression on the transformed data to estimate y_0 and b.