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Abstract This study highlights the features of vine copula for examining compound events involving
underlying conditions that amply the compounding effects. To illustrate, we study compound floods in
Texas (TX), USA. These compound floods consist of combinations of precipitation and surface runoff with
the El Ni~no-Southern Oscillation (ENSO) and rising temperatures as underlying conditions. Although the
individual variable of precipitation and runoff may not itself be extreme, large exceedances can lead to
flooding situations when combined. The presence of underlying conditions (e.g., El Ni~no and/or rising
temperatures) can exacerbate the associated flood impacts. We use observational data during May–August
for each climate division of TX. A three-dimensional vine copula is used first to quantify the ENSO effect on
precipitation and runoff through conditioning sets of vine copula. We further examine the interplay of a
warming signal and El Ni~no to reveal their mutual effects on compound floods by placing these two factors
as interrelated conditions in a four-dimensional vine copula. Our results show that El Ni~no is much stronger
than the other ENSO states in conditioning a high likelihood of TX compound floods by amplifying mean
and extreme states of rainfall and runoff. Conditioned by both El Ni~no and global temperatures, a slight
reduction occurs in TX compound floods under the warmer condition. This is consistent with the trend of
precipitation and runoff composites under given conditions, while no appreciable changes are found to
suggest a different joint effect of El Ni~no and rising temperatures on TX compound floods.

1. Introduction

Extreme impacts of weather and climate events, highlighted by Leonard et al. (2014), can result from either
a single variable being in an extreme state or an accumulation of variables not all of which are extreme. The
latter case is known as compound events. According to the Intergovernmental Panel on Climate Change
(IPCC) report (Seneviratne et al., 2012), compound events are defined as: ‘‘(1) two or more extreme events
occurring simultaneously or successively; (2) combinations of extreme events with underlying conditions
that amplify the impact of the events; (3) combinations of events that are not themselves extremes but lead
to an extreme event or impact when combined.’’ Although awareness has increased about multivariate
extreme events, compound events involving the (2) and (3) characteristics above receive little attention due
to the limitations of current approaches and concepts.

Understanding the role of underlying conditions is important given the amplifying effects that they can
bring to compound events (Dole et al., 2011; Lott et al., 2013; Pall et al., 2011; Stott et al., 2004; Trenberth
et al., 2015). For instance, Prosdocimi et al. (2015) find substantially increased urbanization conditions to
enhance the likelihood of urban floods by driving long-term changes of flows at catchments in northwest-
ern England. Likewise, studies reveal that soil moisture content can be a strong conditioning factor for
development of mega-heat waves in many regions of the world through land-atmosphere feedback (Muel-
ler & Seneviratne, 2012). These compound events are conditioned by a single factor (i.e., urbanization level
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or soil moisture state). It is also likely that multiple interrelated factors exert conditional effects and lead to
more severe compound events (Field et al., 2012; Fischer et al., 2007; Leonard et al., 2014; Moftakhari et al.,
2017; Stocker et al., 2013). In the case of sea level rise, the interplay of tide and surge conditions has signifi-
cantly accelerated the sea level rise over the 20th century (Church & White, 2006). A transformed El Ni~no tel-
econnection related to the interaction between El Ni~no dynamics and anthropogenic forcing was found to
be responsible for the floods over the southern Great Plains in May 2015 (Wang et al., 2015). Multiple inter-
related conditions add another dimension to the analysis of compound events—the interdependency
between underlying conditions affects whether their mutual interaction results in a damping or enhance-
ment of the compounding effects.

To identify the contribution of underlying conditions, one needs to establish conditional relationship, which
measures dependence of the occurrence or impact of one event on the occurrence of another event (Leon-
ard et al., 2014; Seneviratne et al., 2012). A common approach for deriving conditional dependence applies
composite analysis. For instance, precipitation composites are made for examining sensitivity of precipita-
tion to different phases of El Ni~no-Southern Oscillation (ENSO) (e.g., Hendon, 2003; Wu et al., 2003). In this
approach, the linkage between variables and underlying conditions is expressed in an empirical manner,
therefore not sufficient to yield predictive information. Another approach is to perform linear regression
(e.g., Lloyd, 2005). Assuming a linear relationship between variables and conditioning factors may be useful
for describing changes related to variables’ mean states (Mueller & Seneviratne, 2012), but for interpreting
extreme tail behavior, the simplified assumption of linearity is questionable. More advanced methods, such
as hidden Markov modeling, build such relationships through a doubly embedded stochastic process, pro-
ducing a sequence of observations under the assumption of conditional independence of the hidden sto-
chastic process (MacDonald & Zucchini, 1997). A Bayesian concept (Madadgar et al., 2016; Madadgar &
Moradkhani, 2013; Sadegh et al., 2017) and the framework developed by Heffernan and Tawn (2004) for
modeling multivariate extreme values with conditions can also be applied to estimate conditional distribu-
tion of random variables. A limitation of the latter two methods is that without assuming a specific depen-
dence structure, there is no simple closed-form conditional distribution.

Copula has emerged as an effective approach for addressing interdependence between multiple variables
(Salvadori et al., 2007). There are many applications of copula (e.g., Chebana & Ouarda, 2011; Cheng et al.,
2016; De Michele & Salvadori, 2003; Favre et al., 2004; Hao & Singh, 2013, 2016; Khedun et al., 2014;
Madadgar & Moradkhani, 2011, 2013; Salvadori et al., 2013, 2011; Sarhadi et al., 2016; Serinaldi et al., 2009;
Vandenberghe et al., 2011). Most of these studies are in the context of unconditional assessment. In other
words, no conditional relationships are invoked. Vine copula, also known as pair-copula construction, pro-
vides a solution for constructing multidimensional copula without requiring a conditional independence
assumption (Aas et al., 2009). A few recent studies have demonstrated the applicability of vine copula to
hydrology (e.g., Bevacqua et al., 2017; Xiong et al., 2015). These studies show the flexibility of vine copula in
reproducing a wide range of dependence between multivariate variables, including heterogeneous depen-
dence that could exist among different pairs (also see Liu et al., 2015, 2016; Vernieuwe et al., 2015; Xiong
et al., 2014). Our purpose in this study is to highlight its usefulness for evaluating the importance of condi-
tional relationships not only between variables and underlying conditions but also between the conditions
themselves. The latter point is critical for examining compounding impacts caused by the mutual interaction
of physical conditions, which can otherwise remain undetectable if these conditions are evaluated separately.

We employ the framework of vine copula for assessing compound floods over Texas (TX), USA. Our com-
pound floods consist of combinations of precipitation and surface runoff with the El Ni~no-Southern Oscilla-
tion and rising temperature conditions, a scenario related to type (2) compound events in the IPCC report. It
is well-known that ENSO affects extreme weather worldwide (e.g., Horel & Wallace, 1981; Hoskins & Karoly,
1981; Webster 1981) including changes in precipitation anomalies on daily to intraseasonal time scales in
the southern and central USA. (e.g., Gershunov, 1998; Gershunov & Barnett, 1998; Hoell et al., 2015; Rope-
lewski & Halpert, 1986). In this study, we examine the conditional effect of ENSO for TX precipitation and
surface runoff through the conditioning set of a three-dimensional vine copula. Surface temperature is
another factor that is closely associated with variations in precipitation because of their thermodynamic
relations (Adler et al., 2008; Allan & Soden, 2008). Moreover, emerging research indicates that an increase in
global temperatures may intensify El Ni~no dynamics (e.g., Cai et al., 2015; Collins et al., 2010; Latif & Keenly-
side, 2009; Meehl & Teng, 2007; Timmermann et al., 1999). Herein we examine the interplay of a warming
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signal and El Ni~no to reveal their mutual effects on TX compound floods by placing these two factors as
interrelated conditions using a four-dimensional vine copula.

We focus on May–August averaged precipitation and surface runoff for TX. Although the individual variable of
precipitation and runoff may not itself be extreme, large exceedances can lead to flooding when combined.
From this perspective, our study is also relevant for understanding type (3) compound events in the IPCC
report. We apply this framework to 10 climate divisions of TX to identify changes in the spatial pattern of pre-
cipitation and surface runoff under corresponding climatic conditions. The description of our data and meth-
ods appears in section 2. We describe the results in section 3 and discuss implications in the last section.

2. Data and Methods

2.1. Data
Contiguous U.S. precipitation and surface runoff are obtained from National Oceanic and Atmospheric
Administration (NOAA) monthly U.S. Climate Division data (NCDC, 2002). The monthly estimations of runoff
were produced by a one-layer leaky bucket model driven with observed precipitation and temperature at

Figure 1. Ten climate divisions of Texas (TX) state, USA.
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each climate division (Huang et al., 1996). We use data from 1932 to 2011, a period with complete annual
monthly values for both precipitation and runoff. The availability of a relatively long record of these varia-
bles can facilitate a statistically robust estimate of changes in tail events. We focus on monthly rainfall and
runoff averaged for the wet season, i.e., May–August, when TX receives approximately 60% of its annual
precipitation and there is a high probability of compound flooding. Precipitation and runoff anomalies are
first calculated relative to their respective May–August climatology (1932–2011) and then standardized with
respect to one standard deviation of their univariate distribution during the wet season for each climate
division of TX. Figure 1 shows the 10 climate divisions.

ENSO events during 1932–2011 are identified based on an averaged May–August exceedance of sea surface
temperature (SST) anomalies in the Ni~no3.4 region (58S–58N, 1708W–1208W) relative to a 1932–2011 climatol-
ogy (Climate Prediction Center, 2015; Kousky & Higgins, 2007). We define SST anomalies more than one stan-
dard deviation above (below) the long-term mean as El Ni~no (La Ni~na) and the rest as ENSO neutral cases in
order to examine their respective effects on TX climate-division-based precipitation and surface runoff.

Global temperature is obtained from the HadCRUT4 data set at the Met Office Hadley Centre. The Had-
CRUT4 near surface temperature data set was produced by blending data from the Climatic Research Unit
at the University of East Anglia (CRUTEM4) surface air temperature data set and the Hadley Centre SST
(HadSST3) sea-surface temperature data set. A gridded data set of global historical surface temperature
anomalies relative to a 1961–1990 reference period is available for each month since January 1850, on a 58

grid. Averaged May–August temperature anomalies from 1932 to 2011 are used for examining the com-
bined impacts of El Ni~no and global temperature on compound floods.

2.2. Methods
2.2.1. Copula
Let X5 X1; . . . ; Xdð Þ T be a d-dimensional random vector with joint distribution F xð Þ and the marginal distri-
butions F1 x1ð Þ; . . . ; Fd xdð Þ. According to Sklar’s theorem (Sklar, 1959), there always exists a copula C which
allows for joining the margins and modeling the joint dependence structure such that for all

x1; . . . ; xdð Þ 2 ð21; 1Þd :

F x1; . . . ; xdð Þ5 C F1 x1ð Þ; . . . ; Fd xdð Þð Þ5C u1; . . . ; udð Þ (1)

where the copula C is a multivariate distribution function with uniform margins u1; . . . ; udð Þ 2 0; 1½ �d . The
corresponding multivariate density can be expressed as (Yan, 2007):

f x1; . . . ; xdð Þ5
Yd

i51

fi xið Þ
" #

3 c u1; . . . ; udð Þ (2)

where c u1; . . . ; udð Þ and fi xið Þ represent the copula density and the
marginal density, respectively. In this paper, we consider four univari-
ate probability distributions as the potential margin of climate varia-
bles including May–August averaged rainfall and surface runoff at
each climate division of TX, three phases of ENSO signal and the
global averaged temperature during the same period. The best fit
marginal distribution for each variable is identified according to the
chi-square goodness of fit test (see Tables 1 and 2 as an example).
2.2.2. Vine Copula
Although parameter restrictions and computationally intensive formu-
lations limit multivariate modeling at higher dimensions, e.g., d � 3
(Kurowicka, 2011; Ren et al., 2014), there are many options for bivari-
ate copulas. This motivates pair-copula constructions (PCCs) (Aas &
Berg, 2009; Brechmann & Schepsmeier, 2013; Kurowicka & Cooke,
2007). The basic idea of the PCCs is to decompose the d-dimensional
multivariate density into d d21ð Þ=2 pair-copula densities or building
blocks that can provide a flexible approach for modeling multivariate
distributions of any dimension (Bedford & Cooke, 2002; Joe 1996,
1997; Schirmacher & Schirmacher, 2008). In order to systemize PCCs,

Table 1
Chi-Square Test for Different Theoretical Distributions Fitted to Runoff, Precipita-
tion and SST Composites at Climate Division 5 (D5), With Respect to La Nina,
ENSO Neutral and El Ni~no States

Distributions Precipitation SST Runoff

La Nina
Normal 2.01 1.55 4.30
Gamma 2.08 1.50 4.00
Lognormal 2.12 1.47 3.87
Weibull 1.98 3.47 6.00

ENSO Neutral
Normal 12.15 4.32 9.46
Gamma 13.41 4.27 8.46
Lognormal 14.13 4.26 8.08
Weibull 9.34 6.94 23.06

El Ni~no
Normal 0.89 2.62 5.02
Gamma 0.83 2.50 4.51
Lognormal 0.82 2.44 4.32

Note. The best distribution for each variable is indicated in bold.
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Bedford and Cooke (2001, 2002) introduced tree representations,
called regular vines. Two subsets of regular vines are commonly in
use: canonical vines (C-vines) and drawable vines (D-vines). Here we
use C-vines to identify different decompositions of PCCs. Figure 2 is a
graphical representation of three-dimensional (Figure 2a) and four-
dimensional (Figure 2b) C-vines employed herein. It was constructed
by choosing a specific order of variables and consists of n21 linked
trees Ti , i51; . . . ; n – 1. The order defines the sequence of conditioning
in the PCCs: first variable 1 is conditioned, then variable 2 and so on
(Brechmann & Schepsmeier, 2013). For instance, at T1 in Figure 2a, the

circled nodes represent the three marginal density functions of El Ni~no (or La Ni~na or ENSO neutral states),
precipitation and surface runoff (also see Figure 2c).

Each edge is labeled and modeled with the pair-copula of the variables that it represents. The edges in level
i become nodes for the next level i11. A n-dimensional density of the C-vine copula is expressed as (Czado
et al., 2012):

f ðx1; . . . ; xnÞ5
Yn

k51

fkðxkÞ3
Yn21

i51

Yn2i

j51

ci;i1jj1:ði21ÞðFðxijx1; . . . ; xi21Þ; Fðxi1jjx1; . . . ; xi21ÞÞ (3)

Here f ðx1; . . . ; xnÞ is the joint density function of n-dimensional random variables, fkðxkÞ (k 5 1,. . ., n)
denotes the n marginal densities, and ci;i1jj1:ði21Þ represents the bivariate copula densities. We give orders
of the four variables examined herein, such as (x1, x2, x3, x4) representing variables (ENSO, global tempera-
ture, runoff, precipitation), thus the employed three-dimensional and four-dimensional density functions
can be specified as:

f1345f1 � f3 � f4 � c14 � c13 � c43j1 (4)

f12345f1 � f2 � f3 � f4 � c12 � c13 � c14 � c23j1 � c24j1 � c34j21 (5)

where x1 is the condition in the three-dimensional vine copula and ( x1, x2) is the joint condition in the
four-dimensional case, whose coupling strength will be taken into account in order to determine their
mutual effects on the response variables.

As mentioned before, a large number of bivariate copulas are available for building pair-copulas of the
PCCs to realize a wide range of dependence structures. Five widely applied bivariate copulas (Gaussian, t,

Table 2
Analogous to Table 1 but for El Ni~no and Global Temperature

Distributions El Ni~no Temperature Runoff Precipitation

Normal 2.62 0.91 5.02 0.89
Gamma 2.50 0.87 4.51 0.83
Lognormal 2.44 0.86 4.32 0.82
Weibull 5.61 2.13 7.29 1.49

Note. The best distribution for each variable is indicated in bold.

Figure 2. Tree representation of the (a) three-dimensional and (b) four-dimensional C-vine copula. Climate variables corresponding to the root nodes in
(c) three-dimensional and (d) four-dimensional C-vine copula. E, P, R, T are short for ENSO states, precipitation, surface runoff, and the global averaged temperature,
respectively. The fitted bivariate copula and its dependence parameter are provided for each pair of variables at the root nodes in Climate Division 5 as an example.
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Gumbel, Frank, and Clayton) are examined herein. We select the bivariate copula suitable for each pair of
variables based on Akaike information criterion (AIC) following Schepsmeier et al. (2012). The distribution
functions of the five bivariate copulas are included in the supporting information.

A remaining part of completing the C-vine copula relates to the conditional distribution function, i.e., F xjvð Þ,
where v denotes a vector of r-dimensional variables. For a pair-copula term in tree r11, this can be inferred
using the pair-copula of the previous trees 1; . . . ; r by sequentially applying the formula below:

h x; v; hð Þ :¼ F xjvð Þ5
@Cxvj jv2j

F xjv2j
� �

; F vjjv2j
� �

jh
� �
@F vjjv2j
� � (6)

where vj is an arbitrary component of v; v2j denotes the vector v but excluding the jth component vj ; and
Cxvj jv2j

is a bivariate copula distribution function with parameter(s) h specified in tree r. The notion of h-func-
tion is introduced as the conditional distribution function, and its analytical expression for the pair-copula is
derived by Schirmacher and Schirmacher (2008) and Aas et al. (2009). We also included the conditional dis-
tribution functions of five bivariate copulas in Supplementary Materials.
2.2.3. Conditional Simulations via Vine Copula
To generate simulations from the conditional states of vine copula, the inverse forms of h-functions are
applied. Referring to our three-dimensional case, phases of ENSO signal are considered the only factor that
conditions the joint distribution of precipitation and surface runoff. For instance, assume El Ni~no x1ð Þ and
precipitation x4ð Þ have uniform margins of u1 and u4, respectively. With a given conditional distribution
function of u1 and u4, i.e., h u4ju1; hð Þ, we aim to simulate u4 based on the information of u1 using the condi-
tional copula. We first generate random samples, e.g., s 5 0.01, 0.1,. . ., 0.99 which can be regarded as a ran-
dom probability level of the conditional cumulative distribution functions. For a fixed probability s, we infer
u4 from Cu4ju1

using u15C21
u4ju1

sju2; hð Þ5h21 sju1; hð Þ, where C21
u4ju1

is the inverse of the copula function known
as the s quantile curve of the copula (Min & Czado, 2010; Schirmacher & Schirmacher, 2008). Simulations of
precipitation can be estimated based on the sth copula-based conditional quantile function, i.e., h21

sju1; hð Þ as follows:

x45 F21 h21 sju1; h14ð Þ
� �

(7)

where h14 represents the dependence parameter of the joint distribution of (x1, x4Þ. Note that we also exam-
ine when the condition, i.e., (x1) is replaced by La Ni~na and ENSO neutral states, respectively.

In our four-dimensional scenario, the compound floods consist of precipitation x4ð Þ and surface runoff x3ð Þ
with conditions of both El Ni~no x1ð Þ and global temperature x2ð Þ. To examine joint effects of ENSO and tem-
perature conditions on precipitation, the inverse forms of h-functions regarding a four-dimensional C-vine
structure are sequentially applied as in:

x45 F21 h21 h21 sjh u2ju1; h12ð Þ; h24j1
� �� �

ju1; h14
� �� �

(8)

where h12 identifies the dependency of the joint distribution of underlying conditions (x1, x2), which can be
interpreted as an indicator for measuring the mutual interaction between the two conditions; and h14, h24j1
denote the parameters of c14, c24j1, respectively.

First, we generate a sample size of 500 uniformly distributed random values over the interval [0, 1] (i.e., the
s value) using Monte Carlo simulations. Equations (7) and (8) are then applied to calculate the 500 realiza-
tions (simulations) of precipitation under the individual condition of El Ni~no (analogous for La Ni~na and
ENSO neutral conditions), and under the joint conditions of El Ni~no and global averaged temperature,
respectively. In a similar way, we can derive simulations of surface runoff with the given climatic conditions.
The inverse forms of the five candidate copulas are provided in the supporting information.

3. Results

3.1. Model Validation
Figures 2c and 2d show the C-vine structure with climate variables of interest at the root nodes. Specifically,
the three-dimensional C-vine copula (Figure 2c) models the combination of standardized precipitation (P) and
surface runoff (R) anomalies with ENSO states (E) as the underlying condition. Since we diagnose separate
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effects of El Ni~no, La Ni~na, and ENSO neutral tropical Pacific states on the joint distribution of precipitation
and surface runoff, the notation of E denotes the three individual ENSO states. Heuristically, the dependence
of TX floods on ENSO states is implicitly controlled by the conditional structure, i.e., (23|1), thereby allowing us
to evaluate how surface runoff and precipitation can be modulated by ENSO conditions. The conditional

Figure 3. Five hundred random samples (gray circles) generated from the fitted three-dimensional vine copulas are validated against the observations (red circles)
in pair at Climate Division 5. Pcpn is short for Precipitation and RF is short for runoff.
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strength of rising temperature (T in Figure 2d) is examined in the four-dimensional analysis following the
decomposition shown in Figure 2d. We give bivariate copula with inferred dependence parameters for con-
structing joint distribution of variables at Climate Division 5 (D5) as an example.

We generate 500 simulations of each variable from the fitted pair-copula to offer a visual goodness of fit
test at D5. In Figure 3, simulations (gray circles) are validated against the observed (red circles) for each pair
of variables related to El Ni~no (first row), La Ni~na (second row), and ENSO neutral (bottom row) states,
respectively. It is clear that the random generations provide good coverage of the observations in each sub-
plot, including the upper and lower tail events with respect to the individual variable. In addition to the
agreement in the variability of univariables, the covariability of the simulated and the observed pairs is
largely consistent, showing that the fitted vine copula has characterized a realistic interdependence
between attending physical processes with suitable marginal distributions.

Validation is conducted for the rest of the climate divisions. The results attest to the goodness of fit of both
bivariate copula and marginal distribution applied to each climate division (not shown for sake of brevity).
These diagnoses build confidence in the robustness of our approach for examining the response of combi-
nations of extreme events to underlying conditions in the subsequent analysis.

3.2. Individual Effect of ENSO States on TX Compound Floods
We first estimated the joint distribution of standardized precipitation and surface runoff anomalies condi-
tioned by individual ENSO states. Five hundred simulations of precipitation and surface runoff in response

Figure 4. Boxplots for simulations of precipitation (blue boxes) and surface runoff (red boxes) conditioned by (a) La Nina, (b) ENSO Neutral, and (c) El Ni~no states
at the 10 climate divisions. The observed precipitation (blue dots) and runoff (red dots) composites corresponding to the three ENSO conditions are plotted
for validation. Precipitation and surface runoff are standardized anomalies relative to the May–August climatology of 1932–2011 (black dash line). Pcpn is short for
Precipitation and RF is short for runoff.
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to the given ENSO state were generated and displayed in a box-whisker plot. Figure 4 summarizes the simu-
lations of historical May–August averaged precipitation (blue box) and surface runoff (red box) correspond-
ing to La Ni~na (Figure 4a), ENSO neutral (Figure 4b), and El Ni~no (Figure 4c) states in the 10 climate
divisions. To validate our conditional framework, we sampled the precipitation (blue dots) and runoff (red
dots) observed under each scenario. A quick comparison shows the simulations are qualitatively consistent
with those from observations, though with some extreme wet cases falling beyond the upper 2.5% quantile
of the box-whisker estimates, mostly associated with the ENSO neutral state. By examining the climate-
division-based results, it is fair to say that the spatial variation of precipitation and runoff has been reason-
ably described by conditioning upon the ENSO effect in the sense that the probability space of the
observed bivariates fall within the range of the model’s simulations across the region. Warranted by large
sample sizes and by evidence that the conditional framework produces realistic statistics of both rainfall
and surface runoff, we can evaluate how the underlying conditions affect the compound floods with more
reliability.

Differences in the response of precipitation and runoff to the three ENSO states are noticeable with respect
to the median of the box-whisker simulations. With the presence of La Ni~na (Figure 4a), the median values
of all the distributions are below the climatology (black dash line) of May–August. Although the ENSO neu-
tral state shows a slight increase, neither precipitation nor runoff is likely to have a median exceeding the

Figure 5. Spatial map based upon simulations of median and 95% quantile of precipitation anomalies (left two columns in mm/month) and runoff anomalies
(right two columns in mm/month) corresponding to La Nina (top), ENSO Neutral (middle), El Nino states (bottom). Precipitation and runoff anomalies are
calculated with respect to the 1932–2011 climatology of May–August. Precipitation is short as Pcpn and runoff is short as RF.
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long-term mean. Both scenarios dictate a low likelihood of severe compound floods in the 10 climate divi-
sions. The effect on precipitation and runoff is opposite under the condition of El Ni~no (Figure 4c). In addi-
tion to increases in the median of El Ni~no-related box-whisker plots, our analysis indicates the extreme
magnitude of rainfall and runoff (as large as exceeding three standard deviations) to be irreconcilable with
either La Ni~na or ENSO neutral states. The results affirm El Ni~no to be a more favorable condition for
strengthening both the mean and extreme states of precipitation and runoff over TX. With increased mean
and extreme values, our results indicate an enhanced likelihood of compound floods that can result from
the interplay of individually nonextreme precipitation and runoff variables during the El Ni~no condition.

To have a spatial view of changes in the variables under given conditions, Figure 5 collects the results of 10
climate divisions. We show the median (upper two rows) and 95% quantile (bottom two rows) of precipita-
tion (left two columns) and runoff (right two columns) anomalies for the three ENSO states (also see sup-
porting information Table S1). Consistent with the estimates using standardized anomalies in Figure 4, the
conditionality of May–August rainfall is pronounced with El Ni~no, though not uniform in space. The largest
increases occur in D1, 2, and 7, where the median has exceeded the seasonal climatology by 5–16 mm/
month (Figure 5i) with extreme cases reaching an exceedance of 60 mm/month (Figure 5j). This is also the
case for surface runoff, showing moderate increases overall, with a notable increase in D7 and 8 (Figure 5l).
Increases in extreme anomalies of precipitation and surface runoff affect occurrences of extreme compound
floods, particularly under El Ni~no conditions. By contrast, the other two ENSO phases induce 2–4 times less
seasonal rainfall and runoff over the region. In summary, TX compound floods show more sensitivity to the

Figure 6. Five hundred random samples (gray circles) generated from the fitted four-dimensional vine copulas are validated against the observations (red circles)
in pair at Climate Division 5. Pcpn is short for Precipitation. RF is short for runoff. Temp is short for global averaged temperature.
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presence of El Ni~no, a symptom of increases in both precipitation and surface runoff, thereby yielding an
enhanced likelihood of compound floods in TX during May–August.

3.3. Combined Effects of El Ni~no and Rising Global Temperature on TX Compound Floods
Another purpose of this study is to examine changes in the combination of extreme events caused by the
mutual interaction of underlying conditions. El Ni~no has been identified as a strong factor in conditioning
TX May–August compound floods. We next incoporated both global temperature and El Ni~no to condition
the compound floods. Our four-dimensional analysis consists of precipitation and surface runoff conditional
upon global averaged temperatures and El Ni~no during the wet season. Analogous to Figure 3, we present
a scatter plot for visualizing goodness of fit of the four-dimensional vine copula at D5 as an example (see
Figure 6). The bivariate copula fitted to each pair of variables can be viewed in Figure 2d. Again, 500 simula-
tions (gray circles) were derived for each variable and validated against observations (red circles) in pairs.
This result, in addition to the pair-relationship in Figure 3, shows an agreement regarding the simulated
and observed relationships of global temperature with the rest of the variables, i.e., rainfall, runoff, and El
Ni~no. By building a connection to global temperature, it becomes feasible to diagnose the jointly condi-
tional effects of warming and El Ni~no on TX compound floods in a quantitative manner.

To illustrate, we examined two scenarios created by varying the magnitude of the global temperature. One
scenario was conditioned by El Ni~no and temperatures with a magnitude between the 30% and 70% quan-
tiles of global averaged temperature, which is about 0.06–0.158C above its long-term mean. The joint

Figure 7. Boxplots for simulations of precipitation (blue box) and runoff (red box) under the joint condition of El Ni~no and Normal temperature (30–70% quantile
of the global averaged temperature) (a), and under the joint condition of El Ni~no and High temperature (above 70% quantile of the global averaged temperature)
(b) at the 10 climate division. The difference between (b) and (a) is placed in plot (c). The observed precipitation (blue dots) and runoff (red dots) composites corre-
sponding to each scenario are plotted for validation. Precipitation and runoff are standardized anomalies relative to the 1932–2011 climatology of May–August
(black dash line). Pcpn is short for Precipitation and RF is short for runoff.
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condition of the other scenario involves El Ni~no and temperatures exceeding the 70% quantile, i.e., 0.3–
0.58C higher than the climatology. The temperature condition in the first scenario can be interpreted as an
analogy to the historical temperature state of the wet season from 1932 to 1950 (hereafter, Normal temp).
The condition in the second scenario is analogous to a warmer globe during 1950–2011 (hereafter, High
temp). With the specified conditions, large simulations of precipitation and surface runoff were generated
using the conditional copula to facilitate the examination of changes in compound floods.

Figure 7 shows the standardized anomalies of precipitation (blue box) and surface runoff (red box) simu-
lated under the joint condition of El Ni~no and Normal Temp (Figure 7a) as well as the joint condition of El
Ni~no and High Temp (Figure 7b) at the 10 climate divisions. Simulations from the conditional vine copula
were validated against observed precipitation (blue dots) and runoff (red dots) for the two scenarios distin-
guished by different global temperatures. Akin to the previous assessment, the simulated results are largely
in agreement with the observations, attesting to the suitability of our approach for modeling conditional
distribution and spatial distribution of TX compound floods. Nevertheless, by visual comparison, the box-
whisker estimates of the two scenarios quite resemble each other. We made another panel (Figure 7c)
showing the difference between plots (b) and (a), in which the result reveals a slight decrease in El Ni~no-
related precipitation and surface runoff anomalies across TX when the global temperature increases. Our

Figure 8. Spatial map based upon simulations of median and 95% quantile of precipitation anomalies (left two columns in mm/month) and runoff anomalies
(right two columns in mm/month) under the joint condition of El Ni~no and Normal temperature (top), and under the joint condition of El Ni~no and High tempera-
ture (middle). The difference between the second and the first row is placed in the bottom row. Precipitation and runoff anomalies are calculated with respect to
the 1932–2011 climatology of May–August. Pcpn is short for Precipitation and RF is short for runoff.
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result is also supported by Sillmann et al. (2013) who examined changes in precipitation-based indices on
global and regional scales using different emission scenarios in the Coupled Model Intercomparison Project
Phase 3 and Phase 5 multimodel ensembles. Their result indicates a slight decrease in the projected maxi-
mum 5 day precipitation of 2081–2100 relative to the reference period 1981–2000 over central North Amer-
ica during the summer season under scenarios of higher greenhouse gas emissions.

We also produced a spatial map based on the precipitation and runoff estimates of the two scenarios (Figure
8). The median and 95% quantile of precipitation (left two columns) and runoff anomalies (right two columns)
are presented (also see supporting information Table S2), based on which we calculate the difference
between the first (top row) and second scenario (second row) (bottom row). In accordance with the findings
in Figure 7, the comparison shows that the severity of El Ni~no-related rainfall and runoff over TX has been
slightly reduced by approximately 2 mm/month of precipitation and 0.5 mm/month of runoff averaged over
the 10 divisions under the condition of high global temperature. This reduction is consistent with the trend of
precipitation and surface runoff composites under given conditions, while no significant changes are found to
suggest a different interrelationship between the two conditioning factors. Nor were there material changes
in the mutual effect of El Ni~no and temperatures on TX compound floods in a warmer world.

4. Discussion and Conclusions

Among challenges concerning compound events, the IPCC report highlights a need to better understand
cases that involve mutual interaction between climate processes, which can either lead to a damping or
enhancement of the event impacts (Field et al., 2012). The current study has presented a conditional frame-
work of vine copula for assessing compound events with underlying conditions that may amplify the com-
pounding effects. Following the IPCC’s definition, our TX compound floods involve a combination of heavy
precipitation and large surface runoff, associated with underlying conditions of ENSO forcing and rising
global temperatures. We illustrate this framework by examining (1) the individual effect of ENSO intensities,
and (2) the joint effects of El Ni~no and extreme global temperature on compound floods in TX.

Our diagnosis first demonstrated that the selected three-dimensional and four-dimensional vine copula can
well represent the interrelationship between observed variables. The covariability of each pair of variables
simulated by the fitted vine copula therefore displayed a consistent pattern with observations. Reliant upon
the conditional formulism of fitted vine copulas, simulations of precipitation and surface runoff can be
derived under the condition of ENSO states alone, and under the joint condition of El Ni~no and global tem-
perature, respectively. For both conditional diagnoses, the simulated distribution of precipitation and sur-
face runoff were in agreement with observations. The result provides evidence that the conditional
framework characterized a realistic relationship between variables and underlying conditions as well as
between the underlying conditions themselves, therefore rendering robustness in examining the response
of compound events to physical processes.

A stronger dependence of TX rainfall and runoff on El Ni~no during May–August was revealed when examin-
ing the three individual ENSO states as conditions. Analysis of the 10 climate divisions shows that both the
mean and extreme states of precipitation and runoff have increased by concurrent El Ni~no forcing, while
the median of rainfall and runoff simulations related to La Ni~na (ENSO neutral) remained below (close to)
their climatology. The results, consistent with previous findings attest to the conditional strength of El Ni~no
in enhancing the intensity and likelihood of TX compound floods. To the extent that global surface temper-
ature is closely associated with El Ni~no and precipitation, the interdependence between El Ni~no and rising
global temperature was addressed in order to determine their combined effects on TX floods. We found
that El Ni~no-induced enhancement was not appreciably different under the presence of a warming signal,
thereby indicating a similar mutual effect of El Ni~no and global temperature on TX compound floods in a
warmer world.

By regarding underlying factors as conditional states using vine copula, the conditional framework of vine
copula demonstrates capability in yielding predictive information of compound events by leveraging a real-
istic connection to their physical drivers. While having applied an effective approach to quantify changes in
extreme events, our analysis of TX flooding did not just target the extreme tail of the involved variables.
Rather, we examined cases in which combinations of rainfall and surface runoff that were not themselves
extremes could lead to an extreme flooding when combined. In this sense, the response of extreme tail
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variables may differ from that which is implied by the current result which includes variables not extreme
enough to reflect the effect of tail (in)dependence. Also, in the observational data, our sample size corre-
sponding to the given conditions is limited. To reduce the uncertainty in the statistical simulations, large
ensembles of climate model simulations are desired.

We note that our study only examined one factor (rising global temperature) relevant to understanding
global warming on El Ni~no and precipitation; other plausible factors are yet to be incorporated in a compre-
hensive assessment. To this point, it would be more reasonable to interpret the current study as a proxy for
examining the sensitivity of compound TX floods to a certain warming condition rather than an attribution
study of TX floods to human-induced climate change. We also note that our conclusions are representative
of floods occurring in the months of May–August, and in the TX region only. Findings and results may vary
in other regions and other seasons. To examine whether there are changes in El Ni~no dynamics and in its
associated atmospheric circulation as a result of the mutual effect is beyond the capability of our statistical
framework because it would require large ensemble climate simulations. The emphasis is that the proposed
framework can be applied to diagnose underlying conditions of extreme events including not only climatic
factors but also many other human activity-related factors, such as land-use change, the construction of
dams, etc.
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