California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Linear Analysis Winter 2002 Hoffman*, Meyer, Verona

Do **five** of the following eight problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.

 $\mathbb R$ denotes the set of real numbers.

 $\operatorname{Re}(z)$ denotes the real part of the complex number z.

Im(z) denotes the imaginary part of the complex number z.

 \bar{z} denotes the complex conjugate of the complex number z.

|z| denotes the absolute value of the complex number z

 $\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval [a, b]. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on [a, b] and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.

 $L^{2}([a,b])$ denotes the space of all functions on the inteval [a,b] such that $\int_{a}^{b} |f(x)|^{2} dx < \infty$

MISCELLANEOUS FACTS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$2\sin a \sin b = \cos(a-b) - \cos(a+b)$$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$

$$2\cos a \sin b = \sin(a+b) - \sin(a-b)$$

$$\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{1}{4a} \sin(2ax)$$

$$\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{1}{4a} \sin(2ax)$$

$$\int x \sin(ax) \, dx = \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax)$$

$$\int x \cos(ax) \, dx = \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax)$$

Winter 2002 # 1. Let \mathcal{X} be the space of continuous functions on $[-\pi,\pi]$ with the inner product $\langle f, g \rangle = \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$ and the associated norm. For f in \mathcal{X} , put $\phi_n(f) =$ $\int_{-\pi}^{\pi} f(t) \cos nt \, dt$

- **a.** Show that ϕ_n is a linear functional on \mathcal{X} .
- **b.** Show that ϕ_n is bounded as a linear functional on \mathcal{X}
- c. Find $\|\phi_n\|$
- **d.** Show that $\lim_{n \to \infty} \phi_n(f) = 0$ for each f in \mathcal{X} .

Winter 2002 # 2. Suppose $\mathcal{E} = \{e_1, e_2, e_3, \dots\}$ is an orthonormal basis for a Hilbert space \mathcal{H} . Let $\lambda_1, \lambda_2, \ldots, \lambda_n, \ldots$ be numbers. For v in \mathcal{H} , put $T_n v = \sum_{k=1}^n \lambda_k \langle v, e_k \rangle e_{k+1}$ Show that T_n is a linear operator from \mathcal{H} into \mathcal{H} . a.

- Show that T_n is a bounded linear operator. b
- Show that the operator norm of T_n is $||T_n|| = \max(\{|\lambda_1|, |\lambda_2|, \dots, |\lambda_n|\}).$ с.
- Describe the matrix for T_n with respect to the orthonormal basis \mathcal{E} . d.

Winter 2002 # 3. Suppose $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are norms on a vector space \mathcal{X} . For each of the following decide whether the proposed formula defines a norm on \mathcal{X} . If it does, prove it. If not, explain how you know why not.

- **a.** $||v||_a = ||v||_{\alpha}^2 + ||v||_{\beta}^2$ **b.** $||v||_b = 3 ||v||_{\alpha} + 2 ||v||_{\beta}$
- **c.** $\|v\|_{c} = \|v\|_{\alpha} \cdot \|v\|_{\beta}$

Winter 2002 # 4. For continuous functions f on the interval [0, 1], let

$$(Kf)(x) = \int_0^{\pi} f(t) \cos x \cos t \, dt$$

- **a.** Find all nozero constants μ for which there are nonzero solutions ϕ to the equation $(K\phi)(x) = \mu\phi(x)$. State the value or values μ and the corresponding functions ϕ .
- **b.** Find a function $R(x,t;\lambda)$ such that solutions to the integral equation

(IE)
$$f(x) = g(x) + \lambda \int_0^{\pi} f(t) \cos x \cos t \, dt$$

are given by

$$f(x) = g(x) + \lambda \int_0^{\pi} R(x, t; \lambda) g(t) dt$$

 $f(x) = x + \frac{1}{\pi} \int_0^{\pi} f(t) \cos x \cos t \, dt.$ ${\bf c.}$ Solve the integral equation

(You may use any method of your choice, the result of part **b** is one possibility.)

Winter 2002 # 5. Let a be a real constant with $0 < a < \pi$.

- Put f(x) = 1 for $|x| \le a$ and f(x) = 0 for $a < |x| \le \pi$.
 - **a.** Compute the Fourier series for f on $[-\pi, \pi]$. (Trigonometric or exponential, your choice)
 - **b.** Show that $\sum_{k=1}^{\infty} \frac{1}{k^2} \sin^2 ka = \frac{a(\pi a)}{2}$.

Winter 2002 # 6. Let $\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ be the standard basis vectors for \mathbb{R}^2 and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation represented with respect to the standard basis by the matrix $M = \frac{1}{4} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

- (a) Find all the eigenvalues of T
- (b) Find an orthonormal basis for \mathbb{R}^2 which consists of eigenvectors of T.
- (c) Show that if $\vec{v} \in \mathbb{R}^2$, then

$$\lim_{n \to \infty} T^n \vec{v} = \vec{0}.$$

Winter 2002 # 7. Suppose \mathcal{H} is a Hilbert space and T and T_n , $n = 1, 2, 3, \ldots$ are bounded linear operators on \mathcal{H} . We know that the sequence T_n is said to converge to T in operator norm and write $T_n \xrightarrow{\|\cdot\|} T$ if $\lim_{n \to \infty} ||T_n - T|| = 0$. Here are two other possible notions of convergence for a sequence of Hilbert space operators:

Strong Operator Convergence: The T_n are said to converge **strongly** to T and we write $T_n \xrightarrow{s} T$ if $T_n f \to Tf$ in norm for every f in \mathcal{H} .

Weak Operator Convergence: The T_n are said to converge weakly to T and we write $T_n \xrightarrow{w} T$ if $\langle T_n f, g \rangle \to \langle T f, g \rangle$ in \mathbb{F} for every f and g in \mathcal{H} .

a. Show that if $T_n \xrightarrow{\|\cdot\|} T$, then $T_n \xrightarrow{s} T$. (Operator norm convergence implies strong operator convergence .)

b. Show that if $T_n \xrightarrow{s} T$, then $T_n \xrightarrow{w} T$. (Strong operator convergence implies weak operator convergence .)

c. Suppose $\mathcal{E} = \{e_1, e_2, e_3, \dots\}$ is an orthonormal basis for \mathcal{H} . Let P_n be the orthogonal projection of \mathcal{H} onto the subspace $\mathcal{M}_n = \operatorname{span}(\{e_1, e_2, \dots, e_n\})$ and I be the identity operator on \mathcal{H} . (If = f for every f in \mathcal{H}). Show that $P_n \xrightarrow{s} I$.

d. Use the result of part (**d**) to show that strong operator convergence does not imply operator norm convergence. $\left(T_n \xrightarrow{s} T\right) \Rightarrow \left(T_n \xrightarrow{\parallel \cdot \parallel} T\right)$.

Winter 2002 # 8. Let ϕ be a continuous real valued function on $0 \le x \le \pi$ and consider the boundary value problem

(**)
$$f''(x) + f(x) = \phi(x)$$
 for $0 \le x \le \pi$ with $f(0) + f'(0) = 0$ and $f(\pi) = 0$

a. Find a function G(x,t) such that the solutions to (**) are given by

$$f(x) = \int_0^{\pi} G(x,t)\phi(t) \, dt$$

b. Solve (**) with the function $\phi(x) = 1$. You may use your result from part (a) or any other method you wish.

End of Exam