California State University - Los Angeles

 Department of MathematicsMaster's Degree Comprehensive Examination
Linear Analysis Winter 2002
Hoffman*, Meyer, Verona

Do five of the following eight problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z
$\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval $[a, b]$. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on $[a, b]$ and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.
$L^{2}([a, b])$ denotes the space of all functions on the inteval $[a, b]$ such that $\int_{a}^{b}|f(x)|^{2} d x<$ ∞

MISCELLANEOUS FACTS

$$
\begin{array}{ll}
\sin (a+b)=\sin a \cos b+\cos a \sin b & \cos (a+b)=\cos a \cos b-\sin a \sin b \\
2 \sin a \sin b=\cos (a-b)-\cos (a+b) & 2 \cos a \cos b=\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b=\sin (a+b)+\sin (a-b) & 2 \cos a \sin b=\sin (a+b)-\sin (a-b) \\
\int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{1}{4 a} \sin (2 a x) & \int \cos ^{2}(a x) d x=\frac{x}{2}+\frac{1}{4 a} \sin (2 a x) \\
\int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) & \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x)
\end{array}
$$

Winter $2002 \#$ 1. Let \mathcal{X} be the space of continuous functions on $[-\pi, \pi]$ with the inner product $\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) \overline{g(t)} d t$ and the associated norm. For f in \mathcal{X}, put $\phi_{n}(f)=$ $\int_{-\pi}^{\pi} f(t) \cos n t d t$
a. Show that ϕ_{n} is a linear functional on \mathcal{X}.
b. Show that ϕ_{n} is bounded as a linear functional on \mathcal{X}
c. Find $\left\|\phi_{n}\right\|$
d. Show that $\lim _{n \rightarrow \infty} \phi_{n}(f)=0$ for each f in \mathcal{X}.

Winter $2002 \#$ 2. Suppose $\mathcal{E}=\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ is an orthonormal basis for a Hilbert space \mathcal{H}. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \ldots$ be numbers. For v in \mathcal{H}, put $T_{n} v=\sum_{k=1}^{n} \lambda_{k}\left\langle v, e_{k}\right\rangle e_{k+1}$
a. Show that T_{n} is a linear operator from \mathcal{H} into \mathcal{H}.
b Show that T_{n} is a bounded linear operator.
c. Show that the operator norm of T_{n} is $\left\|T_{n}\right\|=\max \left(\left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|\right\}\right)$.
d. Describe the matrix for T_{n} with respect to the orthonormal basis \mathcal{E}.

Winter $2002 \#$ 3. Suppose $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are norms on a vector space \mathcal{X}. For each of the following decide whether the proposed formula defines a norm on \mathcal{X}. If it does, prove it. If not, explain how you know why not.
a. $\|v\|_{a}=\|v\|_{\alpha}^{2}+\|v\|_{\beta}^{2}$
b. $\|v\|_{b}=3\|v\|_{\alpha}+2\|v\|_{\beta}$
c. $\|v\|_{c}=\|v\|_{\alpha} \cdot\|v\|_{\beta}$

Winter 2002 \# 4. For continuous functions f on the interval $[0,1]$, let

$$
(K f)(x)=\int_{0}^{\pi} f(t) \cos x \cos t d t
$$

a. Find all nozero constants μ for which there are nonzero solutions ϕ to the equation $(K \phi)(x)=\mu \phi(x)$. State the value or values μ and the corresponding functions ϕ.
b. Find a function $R(x, t ; \lambda)$ such that solutions to the integral equation

$$
\begin{equation*}
f(x)=g(x)+\lambda \int_{0}^{\pi} f(t) \cos x \cos t d t \tag{IE}
\end{equation*}
$$

are given by

$$
f(x)=g(x)+\lambda \int_{0}^{\pi} R(x, t ; \lambda) g(t) d t
$$

c. Solve the integral equation $\quad f(x)=x+\frac{1}{\pi} \int_{0}^{\pi} f(t) \cos x \cos t d t$.
(You may use any method of your choice, the result of part \mathbf{b} is one possibility.)

Winter 2002 \# 5. Let a be a real constant with $0<a<\pi$.
Put $f(x)=1$ for $|x| \leq a$ and $f(x)=0$ for $a<|x| \leq \pi$.
a. Compute the Fourier series for f on $[-\pi, \pi]$. (Trigonometric or exponential, your choice)
b. Show that $\sum_{k=1}^{\infty} \frac{1}{k^{2}} \sin ^{2} k a=\frac{a(\pi-a)}{2}$.

Winter $2002 \#$ 6. Let $\vec{e}_{1}=\binom{1}{0}$ and $\vec{e}_{2}=\binom{0}{1}$ be the standard basis vectors for \mathbb{R}^{2} and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation represented with respect to the standard basis by the matrix $M=\frac{1}{4}\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$
(a) Find all the eigenvalues of T
(b) Find an orthonormal basis for \mathbb{R}^{2} which consists of eigenvectors of T.
(c) Show that if $\vec{v} \in \mathbb{R}^{2}$, then

$$
\lim _{n \rightarrow \infty} T^{n} \vec{v}=\overrightarrow{0}
$$

Winter 2002 \# 7. Suppose \mathcal{H} is a Hilbert space and T and $T_{n}, n=1,2,3, \ldots$ are bounded linear operators on \mathcal{H}. We know that the sequence T_{n} is said to converge to T in operator norm and write $T_{n} \xrightarrow{\|\cdot\|} T$ if $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$. Here are two other possible notions of convergence for a sequence of Hilbert space operators:

Strong Operator Convergence: The T_{n} are said to converge strongly to T and we write $T_{n} \xrightarrow{s} T$ if $T_{n} f \rightarrow T f$ in norm for every f in \mathcal{H}.

Weak Operator Convergence: The T_{n} are said to converge weakly to T and we write $T_{n} \xrightarrow{w} T$ if $\left\langle T_{n} f, g\right\rangle \rightarrow\langle T f, g\rangle$ in \mathbb{F} for every f and g in \mathcal{H}.
a. Show that if $T_{n} \xrightarrow{\|\cdot\|} T$, then $T_{n} \xrightarrow{s} T$. (Operator norm convergence implies strong operator convergence .)
b. Show that if $T_{n} \xrightarrow{s} T$, then $T_{n} \xrightarrow{w} T$. (Strong operator convergence implies weak operator convergence .)
c. Suppose $\mathcal{E}=\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ is an orthonormal basis for \mathcal{H}. Let P_{n} be the orthogonal projection of \mathcal{H} onto the subspace $\mathcal{M}_{n}=\operatorname{span}\left(\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\right)$ and I be the identity operator on \mathcal{H}. $(I f=f$ for every f in $\mathcal{H})$. Show that $P_{n} \xrightarrow{s} I$.
d. Use the result of part (d) to show that strong operator convergence does not imply operator norm convergence. $\left(T_{n} \xrightarrow{s} T\right) \nRightarrow\left(T_{n} \xrightarrow{\|\cdot\|} T\right)$.

Winter $2002 \#$ 8. Let ϕ be a continuous real valued function on $0 \leq x \leq \pi$ and consider the boundary value problem
$\left({ }^{* *}\right) \quad f^{\prime \prime}(x)+f(x)=\phi(x) \quad$ for $0 \leq x \leq \pi \quad$ with $f(0)+f^{\prime}(0)=0$ and $f(\pi)=0$
a. Find a function $G(x, t)$ such that the solutions to $\left({ }^{* *}\right)$ are given by

$$
f(x)=\int_{0}^{\pi} G(x, t) \phi(t) d t
$$

b. Solve (${ }^{* *}$) with the function $\phi(x)=1$. You may use your result from part (a) or any other method you wish.

End of Exam

