California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination

Linear Analysis Spring 2009 Cooper, Gutarts*, Hoffman

(Corrected Oct. 2009 MJH)

Do five of the following seven problems. If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.

 $\mathbb R$ denotes the set of real numbers.

 $\operatorname{Re}(z)$ denotes the real part of the complex number z.

Im(z) denotes the imaginary part of the complex number z.

 \bar{z} denotes the complex conjugate of the complex number z.

 $\mid z \mid$ denotes the absolute value of the complex number z

 $\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval [a, b]. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on [a, b] and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.

 $L^2([a,b])$ denotes the space of all functions on the inteval [a,b] such that $\int_a^b |f(x)|^2 \ dx < \infty$

MISCELLANEOUS FACTS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b \qquad \cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$2 \sin a \sin b = \cos(a-b) - \cos(a+b) \qquad 2 \cos a \cos b = \cos(a-b) + \cos(a+b)$$

$$2 \sin a \cos b = \sin(a+b) + \sin(a-b) \qquad 2 \cos a \sin b = \sin(a+b) - \sin(a-b)$$

$$\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{1}{4a} \sin(2ax) \qquad \int \cos^2(ax) \, dx = \frac{x}{2} + \frac{1}{4a} \sin(2ax)$$

$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}(a \sin bx - b \cos bx)}{a^2 + b^2} \qquad \int e^{ax} \cos bx \, dx = \frac{e^{ax}(a \cos bx + b \sin bx)}{a^2 + b^2}$$

Spring 2009 # 1. (Corrected Oct. 2009 MJH) Let \mathcal{M} be the subspace of \mathbb{R}^4 spanned by the vectors

 $v_1 = (1, 0, 0, 0)$ $v_2 = (1, 0, 1, 0)$ and $v_3 = (0, 1, 0, 1)$.

- **a.** Find a basis for \mathcal{M} which is orthonormal with respect to the usual inner product (dot product) on \mathbb{R}^4 .
- **b.** Find the vector w in \mathcal{M} at minimum distance from $w_o = (1, 1, 0, 0)$.

Spring 2009 # 2. Consider the following formulas for v = (x, y) and w = (a, b) in \mathbb{R}^2 .

a. Decide for each of the following whether it defines norm on \mathbb{R}^2 . If "yes", prove it. If "no", show that it is not.

(i)
$$\|v\|_i = x^2 + y^2$$
 (ii) $\|v\|_{ii} = |x| + 2|y|$

b. Decide for each of the following whether it defines an inner product on \mathbb{R}^2 . If "yes", prove it. If "no", show that it is not.

(i)
$$\langle v, w \rangle_i = 3xa - 5yb$$
 (ii) $\langle v, w \rangle_{ii} = xb + ya$

Spring 2009 # 3. Let $f : \mathbb{R} \to \mathbb{R}$ by setting

$$f(x) = \begin{cases} 1, & \text{for } 0 < x < \pi \\ -1, & \text{for } -\pi < x < 0 \\ 0 & \text{for } x = -\pi, 0, \pi \end{cases}$$

and extending 2π -periodically.

- **a.** Find the Fourier series for f(x). (Exponential form or trigonometric form, your choice)
- **b.** Use the result of part **a** to show that

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \dots = \frac{\pi^2}{8}.$$

Spring 2009 # 4. a. Suppose \mathcal{L} is an orthonormal family of vectors in a Hilbert space \mathcal{H} . Show that \mathcal{L} is a linearly independent subset of \mathcal{H} .

b. For each positive integer k, let $e_k(t) = e^{ikt}$. Show that the set $\mathcal{E} = \{e_1, e_2, e_3, \dots\}$ is linearly independent as a set of functions in the space $C([-\pi, \pi])$ of continuous functions functions on the interval [a, b]

Spring 2009 # 5. a. Describe the Neumann series method for inversion of a bounded linear operator of the form I - S on a Banach space \mathcal{X} . Be sure to include conditions sufficient to ensure convergence of the method.

b. Let T be the linear operator on \mathbb{R}^3 represented with respect to the standard at the metric $\begin{pmatrix} 1 & 1/2 & 1/3 \\ 0 & 1 & 1/2 \end{pmatrix}$. Use the method of part **c** to

orthonormal basis by the matrix $\begin{pmatrix} 1 & 1/2 & 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}$. Use the method of part **a** to

find T^{-1} .

Spring 2009 # 6. For each continuous function f on the interval [0, 2] define a function Tf by

$$(Tf)(x) = 1 + \lambda \int_0^x (x^2 - t^2) f(t) dt.$$

a. Find a range of values for the parameter λ for which the transformation T is a contraction on C([0, 2]) with respect to the supremum norm. Justify your answer.

b. Find a range of values for the parameter λ for which the transformation T is a contraction on C([0,2]) with respect to the L^2 norm on C([0,2]). Justify your answer.

c. Describe the iterative process for solving the integral equation

$$f(x) = 1 + \lambda \int_0^x (x^2 - t^2) f(t) \, dt$$

specifying the transformation to be iterated and explaining how this leads to a solution. With $f_0(x) = 0$ for all x as the starting function, compute the first three iterates, $f_1(x)$, $f_2(x)$, and $f_3(x)$.

Spring 2009 # 7. Let \mathcal{V} be the space $L^2[-\pi,\pi]$ with the inner product $\langle f,g \rangle = (1/2\pi) \int_{-\pi}^{\pi} f(t)\overline{g(t)} dt$.

For integers k, let $e_k(t) = e^{ikt}$.

Consider the operator K on \mathcal{V} given by

$$(Kf)(x) = \int_{-\pi}^{\pi} \cos(x-t)f(t) \, dt.$$

- **a.** Show that each e_k is an eigenvector for K and find the corresponding eigenvalues. (Suggestion: You might want to write the cosine in terms of exponentials.)
- **b.** Find a function $R(x, t, \lambda)$ such that solutions f to the equation $f = g + \lambda K f$ are given by

$$f(x) = g(x) + \lambda \int_{-\pi}^{\pi} R(x, t, \lambda) g(t) dt.$$

For what values of λ (if any) does your method fail?

End of Exam