California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Linear Analysis Spring 2005 Gutarts, Hoffman*, Katz

Do five of the following seven problems.

If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.

 $\mathbb R$ denotes the set of real numbers.

 $\operatorname{Re}(z)$ denotes the real part of the complex number z.

Im(z) denotes the imaginary part of the complex number z.

 \bar{z} denotes the complex conjugate of the complex number z.

|z| denotes the absolute value of the complex number z

 $\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval [a, b]. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on [a, b] and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.

 $L^{2}([a,b])$ denotes the space of all functions on the inteval [a,b] such that $\int_{a}^{b} |f(x)|^{2} dx < \infty$

MISCELLANEOUS FACTS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$2\sin a \sin b = \cos(a-b) - \cos(a+b)$$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$

$$2\cos a \sin b = \sin(a+b) - \sin(a-b)$$

$$\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{1}{4a} \sin(2ax)$$

$$\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{1}{4a} \sin(2ax)$$

$$\int x \sin(ax) \, dx = \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax)$$

$$\int x \cos(ax) \, dx = \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax)$$

Spring 2005 # 1. Let f(x) = |x| for x in $[-\pi, \pi]$.

a. Compute either the exponential or the trigonometric form of the Fourier series for f on $[-\pi, \pi]$. (Your choice which)

b. Use the result of part **a** to show that
$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^4} = \frac{\pi^4}{96}$$

Spring 2005 # 2. Let \mathcal{Y} be the space C([0,1]) of all continuous real valued functions on [0,1].

Let \mathcal{Y} be the space of all f in C([0, 1]) such that f' exists and is continuous on [0, 1] (with appropriate one-sided limits at the ends).

- For f in \mathcal{X} , let Df = f' and $||f||_s = ||f||_{\infty} + ||f'||_{\infty}$.
 - **a.** Show that $\|\cdot\|_s$ is a norm on \mathcal{X} . (You may use, if you wish, facts about the known supremum norm $\|\cdot\|_{\infty}$ on C([0,1]).)
 - **b.** Define what it means to be a linear operator and show that D is a linear operator from \mathcal{X} into \mathcal{Y} .
 - **c.** Show that D is not continuous if the norm $\|\cdot\|_{\infty}$ is used on both \mathcal{X} and \mathcal{Y} .
 - **d.** Show that D is continuous if the norm $\|\cdot\|_s$ is used on \mathcal{X} and $\|\cdot\|_{\infty}$ is used on \mathcal{Y} .
 - e. Find the operator norm of D in the setting of part (d).

Suggestion: In parts **c**, **d**, and **e** the functions $f_n(t) = (1/n)\sin(nt)$ might be useful.

Spring 2005 # 3. For f and g in the space C([0, 1]) of all continuous complex valued functions on [0, 1], let

$$[f,g] = \int_0^1 f(t)\overline{g(t)} t \, dt$$

Let \mathcal{P}^1 be the subspace of $\mathcal{C}([0,1])$ consisting of all polynomials of degree no more than 1.

- a. Show that [·, ·] is an inner product on C([0,1]). (You may use, if you wish, facts about the known inner product (f,g) = ∫₀¹ f(t)g(t) dt on C([0,1]).)
 b. Find polynomials e₀(t) and e₁(t) which form a basis for P¹ which is orthonormal
- **b.** Find polynomials $e_0(t)$ and $e_1(t)$ which form a basis for \mathcal{P}^1 which is orthonormal with respect to the inner product $[\cdot, \cdot]$.
- **c.** Use the result of part (b) to find numbers a and b which make the quantity $J = \int_0^1 |t^3 a bt|^2 t \, dt$ as small as possible.

Spring 2005 # **4.** Let \mathcal{X} be the space of all continuous 2π -periodic functions on \mathbb{R} with the inner product $\langle f, g \rangle = (1/\pi) \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$ and its associated norm. For each positive integer k and each f in \mathcal{X} , let $b_k(f) = \int_{-\pi}^{\pi} f(t) \sin kt dt$.

- **a.** Show that b_k is a continuous linear functional on \mathcal{X} .
- **b.** Find the norm of b_k as a linear functional on \mathcal{X} .
- **c.** Show that $\lim_{k\to\infty} b_k(f) = 0$ for each f in \mathcal{X} .

Spring 2005 # 5. For each continuous function f on the interval [0, 1], define a function Tf by

$$(Tf)(x) = 1 + \lambda \int_0^x tf(t) dt$$

a. Find a range of values for the parameter λ for which the transformation T is a contraction with respect to the supremum norm. Justify your answer.

b. Describe the iterative process for solving the integral equation

(*)
$$f(x) = 1 + \lambda \int_0^x tf(t) dt$$

specifying the transformation to be iterated and explaining how this leads to a solution. With $f_0(x) = 1$ for all x as the starting function, compute the first three iterates, $f_1(x)$, $f_2(x)$, and $f_3(x)$.

c. Explain why the equation (*) is equivalent to the initial value problem

(**)
$$f'(x) = \lambda x f(x) ; f(0) = 1$$

Spring 2005 # 6. a. Suppose S is a bounded linear operator on a Banach space \mathcal{X} . Describe the Neumann series method for finding $(I - S)^{-1}$ and state sufficient conditions for convergence of the series.

b. Let *T* be the operator on \mathbb{R}^3 given with respect to the standard basis by the matrix $T = \begin{pmatrix} 1 & -1/2 & 0 \\ 0 & 1 & -1/2 \\ 0 & 0 & 1 \end{pmatrix}$. Use the Neumann series to find T^{-1} . (Hint: What do you want to use as *S*?)

Spring 2005 # 7. Suppose T is a bounded linear operator on a Hilbert space \mathcal{H} .

- **a.** Define what it means for a number μ to be an eigenvalue for T and what it means for μ to be in the spectrum of T.
- **b.** Show that if T is self-adjoint and μ is an eigenvalue for T, then μ is a real number.
- c. Give an example of an operator T and a number μ which is in the spectrum of T but is not an eigenvalue for T. Justify your answer.

End of Exam