California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Linear Analysis Spring 2004 Hoffman*, Katz, Meyer

Do **five** of the following eight problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.

 $\mathbb R$ denotes the set of real numbers.

 $\operatorname{Re}(z)$ denotes the real part of the complex number z.

Im(z) denotes the imaginary part of the complex number z.

 \bar{z} denotes the complex conjugate of the complex number z.

|z| denotes the absolute value of the complex number z

 $\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval [a, b]. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on [a, b] and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.

 $L^2([a,b])$ denotes the space of all functions on the inteval [a,b] such that $\int_a^b \left|f(x)\right|^2\,dx < \infty$

MISCELLANEOUS FACTS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$2\sin a \sin b = \cos(a-b) - \cos(a+b)$$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$

$$2\cos a \sin b = \sin(a+b) - \sin(a-b)$$

$$\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{1}{4a} \sin(2ax)$$

$$\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{1}{4a} \sin(2ax)$$

$$\int x \sin(ax) \, dx = \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax)$$

$$\int x \cos(ax) \, dx = \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax)$$

$$\int \ln x \, dx = x \ln x - x$$

Spring 2004 # 1. Let a be a real constant with $0 < a < \pi$. Define f on $[-\pi, \pi]$ by

$$f(t) = \begin{cases} 1, \text{ for } |t| \le a \\ 0, \text{ for } a < |t| \le \pi \end{cases}$$

a. Compute either the exponential or the trigonometric form of the Fourier series for f on $[-\pi,\pi]$. (Your choice which)

b. Use the result of part **a** to show that
$$\sum_{k=1}^{\infty} \frac{\sin^2(ka)}{k^2} = \frac{a(\pi - a)}{2}$$

Spring 2004 # 2. Let \mathcal{V} be the space $\mathcal{C}([0,2],\mathbb{R})$ of all real valued continuous functions on [0,2] equipped with the inner product $\langle f,g \rangle = \int_0^2 f(t)g(t) dt$. Let \mathcal{W} be the subspace of \mathcal{V} spanned by the functions $f_1(x) = 1$ and $f_2(x) = x$.

- **a.** Prove that f_1 and f_2 are linearly independent. (In the process, state clearly what it means for f_1 and f_2 to be linearly independent as functions on [0, 2].)
- **b.** Find a basis for $\mathcal W$ orthonormal with respect to the specified inner product.
- c. Find constants a and b which minimize the quantity $\int_0^2 (a + bx 2x^2)^2 dt$.

Spring 2004 # 3. For f in the space $C([-\pi,\pi])$ of all continuous numerical valued functions on $[-\pi,\pi]$, let

$$\phi(f) = \int_{-\pi}^{\pi} f(t) \, dt$$

- **a.** Show that ϕ is a linear functional on $[-\pi, \pi]$.
- **b.** Show that ϕ is continuous when the L^1 norm, $\|f\|_1 = \int_{-\pi}^{\pi} |f(t)| dt$, is used on $C([-\pi,\pi]).$
- c. Show that ϕ is continuous when the L^2 norm, $\|f\|_2 = \int_{-\pi}^{\pi} |f(t)|^2 dt$, is used on $C([-\pi,\pi]).$
- **d.** Show that ϕ is continuous when the uniform norm, $\|f\|_{\infty} = \sup\{|f(t)| : t \in [-\pi, \pi]\},\$ is used on $C([-\pi,\pi])$.

Spring 2004 # 4. Suppose \mathcal{H} is an inner product space with inner product $\langle \cdot, \cdot \rangle$ and associated norm $\|\cdot\|$. A sequence $\{f_n\}_{n=1}^{\infty}$ is \mathcal{H} is said to converge weakly to a weak limit g in \mathcal{H} (written $f_n \xrightarrow{w} g$) if $\langle f_n, h \rangle \to \langle g, h \rangle$ as numbers for every h in \mathcal{H} .

- **a.** Show that if $|| f_n g || \to 0$ as $n \to \infty$, then $f_n \xrightarrow{w} g$. (Norm convergence implies weak convergence.)
- **b.** Suppose e_1, e_2, e_3, \ldots is an infinite orthonormal sequence in \mathcal{H} . Show that $e_n \xrightarrow{w} 0$
- c. Use part b to show that in an infinite dimensional inner product space weak convergence does not imply norm convergence
- **d.** Show that in a finite dimensional inner product space, weak convergence does imply norm convergence.

Spring 2004 # 5. For complex valued functions f on $[-\pi, \pi]$, define Kf by

$$(Kf)(x) = \int_{-\pi}^{\pi} (\cos t + x \sin t) f(t) dt$$

- **a.** Describe the kernel and range of K.
- **b.** Find any nonzero eigenvalues in \mathbb{C} and corresponding eigenspaces.
- c. Find a function f on $[-\pi, \pi]$, such that

$$f(x) = x^{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos t + x \sin t) f(t) dt.$$

(You may use the facts that $\int_{-\pi}^{\pi} t \sin t \, dt = 2\pi$ and $\int_{-\pi}^{\pi} t^2 \cos t \, dt = -4\pi$.)

Spring 2004 # 6. Suppose g is a continuous function on [0,1]. For f in C([0,1]) define Tf by

$$(Tf)(x) = g(x) + \lambda \int_0^1 e^{x-t} f(t) dt$$

a. Find a range of values of λ for which T is a contraction with respect to the supremum norm on C([0, 1]).

b. Find a range of values of λ for which T is a contraction with respect to the L^2 -norm on C([0,1]).

c. Describe the iterative process for finding a solution f to the equation

$$f(x) = g(x) + \lambda \int_0^1 e^{x-t} f(t) dt$$

explaining how the procedure works and how one knows that it leads to a solution. **d.** With $f_0(x) = 0$ for all x, compute the first three iterates, f_1 , f_2 , and f_3 .

Spring 2004 # 7. Consider the boundary value problem

(*)
$$-\frac{d}{dx}[xf'(x)] = \phi(x)$$
 for $1 \le x \le 2$ with $f(1) = 0$ and $f'(2) = 0$

a. Find a function G(x, t) such that solutions f to the boundary value problem (*) for known functions ϕ are given by

$$f(x) = \int_1^2 G(x,t)f(t) \, dt$$

b. Solve the boundary value problem (*) for f(x) when $\phi(x) = 1$ for all x.

End of Exam