California State University - Los Angeles

Department of Mathematics
Master's Degree Comprehensive Examination
Linear Analysis Spring 2004
Hoffman*, Katz, Meyer

Do five of the following eight problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z
$\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval $[a, b]$. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on $[a, b]$ and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.
$L^{2}([a, b])$ denotes the space of all functions on the inteval $[a, b]$ such that $\int_{a}^{b}|f(x)|^{2} d x<$ ∞

MISCELLANEOUS FACTS

$$
\begin{array}{ll}
\sin (a+b)=\sin a \cos b+\cos a \sin b & \cos (a+b)=\cos a \cos b-\sin a \sin b \\
2 \sin a \sin b=\cos (a-b)-\cos (a+b) & 2 \cos a \cos b=\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b=\sin (a+b)+\sin (a-b) & 2 \cos a \sin b=\sin (a+b)-\sin (a-b) \\
\int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{1}{4 a} \sin (2 a x) & \int \cos ^{2}(a x) d x=\frac{x}{2}+\frac{1}{4 a} \sin (2 a x) \\
\int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) & \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x) \\
\int \ln x d x=x \ln x-x &
\end{array}
$$

Spring 2004 \# 1. Let a be a real constant with $0<a<\pi$. Define f on $[-\pi, \pi]$ by

$$
f(t)=\left\{\begin{array}{l}
1, \text { for }|t| \leq a \\
0, \text { for } a<|t| \leq \pi
\end{array}\right.
$$

a. Compute either the exponential or the trigonometric form of the Fourier series for f on $[-\pi, \pi]$. (Your choice which)
b. Use the result of part a to show that $\sum_{k=1}^{\infty} \frac{\sin ^{2}(k a)}{k^{2}}=\frac{a(\pi-a)}{2}$

Spring 2004\#2. Let \mathcal{V} be the space $\mathcal{C}([0,2], \mathbb{R})$ of all real valued continuous functions on $[0,2]$ equipped with the inner product $\langle f, g\rangle=\int_{0}^{2} f(t) g(t) d t$.

Let \mathcal{W} be the subspace of \mathcal{V} spanned by the functions $f_{1}(x)=1$ and $f_{2}(x)=x$.
a. Prove that f_{1} and f_{2} are linearly independent. (In the process, state clearly what it means for f_{1} and f_{2} to be linearly independent as functions on $[0,2]$.)
b. Find a basis for \mathcal{W} orthonormal with respect to the specified inner product.
c. Find constants a and b which minimize the quantity $\int_{0}^{2}\left(a+b x-2 x^{2}\right)^{2} d t$.

Spring 2004\#3. For f in the space $C([-\pi, \pi])$ of all continuous numerical valued functions on $[-\pi, \pi]$, let

$$
\phi(f)=\int_{-\pi}^{\pi} f(t) d t
$$

a. Show that ϕ is a linear functional on $[-\pi, \pi]$.
b. Show that ϕ is continuous when the L^{1} norm, $\|f\|_{1}=\int_{-\pi}^{\pi}|f(t)| d t$, is used on $C([-\pi, \pi])$.
c. Show that ϕ is continuous when the L^{2} norm, $\|f\|_{2}=\int_{-\pi}^{\pi}|f(t)|^{2} d t$, is used on $C([-\pi, \pi])$.
d. Show that ϕ is continuous when the uniform norm, $\|f\|_{\infty}=\sup \{|f(t)|: t \in[-\pi, \pi]\}$, is used on $C([-\pi, \pi])$.

Spring $2004 \# 4$. Suppose \mathcal{H} is an inner product space with inner product $\langle\cdot, \cdot\rangle$ and associated norm $\|\cdot\|$. A sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ is \mathcal{H} is said to converge weakly to a weak limit g in \mathcal{H} (written $f_{n} \xrightarrow{w} g$) if $\left\langle f_{n}, h\right\rangle \rightarrow\langle g, h\rangle$ as numbers for every h in \mathcal{H}.
a. Show that if $\left\|f_{n}-g\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $f_{n} \xrightarrow{w} g$.
(Norm convergence implies weak convergence.)
b. Suppose $e_{1}, e_{2}, e_{3}, \ldots$ is an infinite orthonormal sequence in \mathcal{H}. Show that $e_{n} \xrightarrow{w} 0$
c. Use part b to show that in an infinite dimensional inner product space weak convergence does not imply norm convergence
d. Show that in a finite dimensional inner product space, weak convergence does imply norm convergence.

Spring $2004 \#$ 5. For complex valued functions f on $[-\pi, \pi]$, define $K f$ by

$$
(K f)(x)=\int_{-\pi}^{\pi}(\cos t+x \sin t) f(t) d t
$$

a. Describe the kernel and range of K.
b. Find any nonzero eigenvalues in \mathbb{C} and corresponding eigenspaces.
c. Find a function f on $[-\pi, \pi]$, such that

$$
f(x)=x^{2}+\frac{1}{\pi} \int_{-\pi}^{\pi}(\cos t+x \sin t) f(t) d t
$$

(You may use the facts that $\int_{-\pi}^{\pi} t \sin t d t=2 \pi$ and $\int_{-\pi}^{\pi} t^{2} \cos t d t=-4 \pi$.)
Spring 2004 \# 6. Supppose g is a continuous function on $[0,1]$. For f in $C([0,1])$ define $T f$ by

$$
(T f)(x)=g(x)+\lambda \int_{0}^{1} e^{x-t} f(t) d t
$$

a. Find a range of values of λ for which T is a contraction with respect to the supremum norm on $C([0,1])$.
b. Find a range of values of λ for which T is a contraction with respect to the L^{2}-norm on $C([0,1])$.
c. Describe the iterative process for finding a solution f to the equation

$$
f(x)=g(x)+\lambda \int_{0}^{1} e^{x-t} f(t) d t
$$

explaining how the procedure works and how one knows that it leads to a solution.
d. With $f_{0}(x)=0$ for all x, compute the first three iterates, f_{1}, f_{2}, and f_{3}.

Spring $2004 \#$ 7. Consider the boundary value problem

$\left(^{*}\right) \quad-\frac{d}{d x}\left[x f^{\prime}(x)\right]=\phi(x) \quad$ for $\quad 1 \leq x \leq 2 \quad$ with $\quad f(1)=0$ and $f^{\prime}(2)=0$
a. Find a function $G(x, t)$ such that solutions f to the boundary value problem $(*)$ for known functions ϕ are given by

$$
f(x)=\int_{1}^{2} G(x, t) f(t) d t
$$

b. Solve the boundary value problem (*) for $f(x)$ when $\phi(x)=1$ for all x.

End of Exam

