California State University - Los Angeles
Department of Mathematics
Master's Degree Comprehensive Examination
Linear Analysis Spring 2003
Cooper*, Hoffman, Meyer

Do five of the following eight problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z
$\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval $[a, b]$. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on $[a, b]$ and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.
$L^{2}([a, b])$ denotes the space of all functions on the inteval $[a, b]$ such that $\int_{a}^{b}|f(x)|^{2} d x<$ ∞

MISCELLANEOUS FACTS

$$
\begin{array}{ll}
\sin (a+b)=\sin a \cos b+\cos a \sin b & \cos (a+b)=\cos a \cos b-\sin a \sin b \\
2 \sin a \sin b=\cos (a-b)-\cos (a+b) & 2 \cos a \cos b=\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b=\sin (a+b)+\sin (a-b) & 2 \cos a \sin b=\sin (a+b)-\sin (a-b) \\
\int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{1}{4 a} \sin (2 a x) & \int \cos ^{2}(a x) d x=\frac{x}{2}+\frac{1}{4 a} \sin (2 a x) \\
\int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) & \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x)
\end{array}
$$

Spring $2003 \#$ 1. Which of the following are vector spaces over \mathbb{R} ? For each explain why or why not. (You may assume that the spaces $C([0,1], \mathbb{R})$ of all continuous real valued functions on $[0,1]$ and the space $\mathcal{P}_{\mathbb{R}}$ of all polynomials with real coefficients are vector spaces over \mathbb{R}.)
a. $A=\left\{f \in C([0,1], \mathbb{R}): \int_{0}^{1} f(t) d t=0\right\}$
b. $B=\left\{f \in C([0,1], \mathbb{R}): f^{\prime \prime}\right.$ exists , $f^{\prime \prime}(x)+f(x)=0$ for all x in \mathbb{R}, and $\left.f(0)=1\right\}$
c. $C=\left\{p \in \mathcal{P}_{\mathbb{R}}:\right.$ degree $(p) \leq 3$, including the zero polynomial $\}$
d. $D=\left\{p \in \mathcal{P}_{\mathbb{R}}: \operatorname{degree}(p) \leq 3\right.$, or $\left.p=0\right\}$

Spring 2003\#2. a. Define what it means for a set \mathcal{L} of vectors in a vector space \mathcal{V} to be linearly independent. (Be careful, your definition must allow for the possibility that \mathcal{L} is an infinite set.)
b. Show that the functions $f_{0}(x)=1, f_{1}(x)=e^{x}$, and $f_{2}(x)=e^{2 x}$ are linearly independent as functions on \mathbb{R}. (Hint: $e^{2 x}=\left(e^{x}\right)^{2}$.)
c. Show that the functions $g_{0}(x)=1, g_{1}(x)=2 \cos ^{2} x$, and $g_{2}(x)=3 \sin ^{2} x$ are not linearly independent as functions on \mathbb{R}.

Spring 2003\#3. Let $C([-1,1])$ be the space of continuous functions on $[-1,1]$ with the inner product $\langle F, G\rangle=\int_{-1}^{1} F(t) \overline{G(t)} d t$. (You may assume this is an inner product.) Let $\|\cdot\|_{2}$ be the associated norm on $C([-1,1])$.

Let \mathcal{H} be the space of all functions f on $[-1,1]$ with f^{\prime} continuous on $[-1,1]$. For f and g in \mathcal{H}, put

$$
[f, g]=f(0) \overline{g(0)}+\int_{-1}^{1} f^{\prime}(t) \overline{g^{\prime}(t)} d t
$$

a. Show that $[f, g]$ gives an inner product on \mathcal{H}.
(Suggestion: For what f is $\left\langle f^{\prime}, f^{\prime}\right\rangle=0$?)
b. Let $\|\cdot\|_{1}$ be the norm on \mathcal{H} associated with the inner product $[\cdot, \cdot]$. For f in \mathcal{H}, let $D f=f^{\prime}$.
(i) Show that D is a linear operator from \mathcal{H} into $C([-1,1])$.
(ii) Show that D is bounded as a linear operator with the norm $\|\cdot\|_{1}$ on \mathcal{H} and $\|\cdot\|_{2}$ on $C([-1,1])$.

Spring $2003 \# 4$. Let L be the differential operator $L=-d^{2} / d x^{2}$.
a. Find a function $G(x, t)$ such that for given continuous functions f on $[0,1]$ solutions to the boundary value problem

$$
L y=f \quad \text { with } y(0)=y^{\prime}(0) \text { and } y(1)=y^{\prime}(1)
$$

are given by

$$
y(x)=\int_{0}^{1} G(x, t) f(t) d t
$$

b. Use the function G found in part a to solve the problem when $f(x)=x$.

Spring 2003 \# 5. Consider the integral equation

$$
\begin{equation*}
f(x)=g(x)+\lambda \int_{0}^{1} x^{3} t^{3} f(t) d t \tag{IE}
\end{equation*}
$$

where λ is a numerical parameter.
a. With $g(x)=x$, solve for $f(x)$ by using the Neumann series. That is, by computing $g+\sum_{n=1}^{\infty} \lambda^{n} K^{n} g$ for an appropriate operator K.
b. Find a function $R(x, t, \lambda)$ such that solutions to the equation (IE) are given for each g by

$$
f(x)=g(x)+\lambda \int_{0}^{1} R(x, t, \lambda) g(t) d t
$$

c. Take $g(x)=x$ in part \mathbf{b} and show that one gets the same solution as in part \mathbf{a}.

Spring $2003 \#$ 6. Let $f_{1}, f_{2}, f_{3}, \ldots$ be a sequence of continuous functions on $[0,1]$, and f be a continuous function on $[0,1]$.
a. Define each of the following.
(i) The sequence f_{n} converges pointwise to f on $[0,1]$.
(ii) The sequence f_{n} converges uniformly to f on $[0,1]$.
(iii) The sequence f_{n} converges in L^{2}-norm to f on $[0,1]$.
b. Show that if the sequence f_{n} converges in L^{2}-norm to f on $[0,1]$, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x
$$

c. Give an example of a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of continuous functions on $[0,1]$ and a limit function f such that the sequence f_{n} converges pointwise to f on $[0,1]$ but

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x \neq \int_{0}^{1} f(x) d x
$$

Spring 2003 \# 7. Let $L^{2}([-\pi, \pi])$ have the inner product $\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x$.
a. Find the Fourier series for the function

$$
f(x)= \begin{cases}0, & \text { for }-\pi \leq x<0 \\ 1, & \text { for } 0 \leq x \leq \pi\end{cases}
$$

with respect to the orthonormal basis $\left\{e_{n}(x)=e^{i n x}: n=0, \pm 1, \pm 2, \pm 3\right\}$
b. Use the result of part a to show that

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\frac{\pi^{2}}{8}
$$

Spring 2003\#8. Supppose g is a continuous function on $[0,1]$. For f in $C([0,1])$ define $T f$ by

$$
(T f)(x)=g(x)+\lambda \int_{0}^{1} e^{x-t} f(t) d t
$$

a. Find a range of values of λ for which T is a contraction with respect to the supremum norm on $C([0,1])$.
b. Find a range of values of λ for which T is a contraction with respect to the L^{2}-norm on $C([0,1])$.
c. Describe the iterative process for finding a solution f to the equation

$$
f(x)=g(x)+\lambda \int_{0}^{1} e^{x-t} f(t) d t
$$

explaining how the procedure works and how one knows that it leads to a solution.
d. With $g(x)=e^{x}$ and $f_{0}(x)=0$ for all x, compute the first three iterates, f_{1}, f_{2}, and f_{3}.

End of Exam

