California State University - Los Angeles
Department of Mathematics and Computer Science Master's Degree Comprehensive Examination

Linear Analysis Spring 2001
Hoffman*, Katz, Meyer

Small corrections, Hoffman, 5/26/01

Do five of the following eight problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z
$\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval $[a, b]$. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on $[a, b]$ and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.
$L^{2}([a, b])$ denotes the space of all functions on the inteval $[a, b]$ such that $\int_{a}^{b}|f(x)|^{2} d x<$ ∞

MISCELLANEOUS FACTS

$$
\begin{array}{ll}
\sin (a+b)=\sin a \cos b+\cos a \sin b & \cos (a+b)=\cos a \cos b-\sin a \sin b \\
2 \sin a \sin b=\cos (a-b)-\cos (a+b) & 2 \cos a \cos b=\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b=\sin (a+b)+\sin (a-b) & 2 \cos a \sin b=\sin (a+b)-\sin (a-b) \\
\int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{1}{4 a} \sin (2 a x) & \int \cos ^{2}(a x) d x=\frac{x}{2}+\frac{1}{4 a} \sin (2 a x) \\
\int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) & \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x)
\end{array}
$$

Spring $2001 \#$ 1. a. Show that the family

$$
\mathcal{T}=\{1 / \sqrt{2 \pi},(1 / \sqrt{\pi}) \cos n x,(1 / \sqrt{\pi}) \sin n x: n=1,2,3, \ldots\}
$$

of functions on the interval $[-\pi, \pi]$ is orthonormal with respect to the inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

b. Find the Fourier series for the function $f(x)=x$ on $[-\pi, \pi]$ using the family \mathcal{T}.
c. Discuss briefly what it means for an orthonormal family to be a complete orthonormal family or an orthonormal basis and how you know that \mathcal{T} is one.
d. Show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Spring 2001 \# 2. For each continuous function f on the interval $[0,2]$ define a function $T f$ by

$$
(T f)(x)=x+\lambda \int_{0}^{x} x t f(t) d t
$$

a. Find a range of values for the parameter λ for which the transformation T is a contraction on $C([0,2])$ with respect to the supremum norm. Justify your answer.
b. Describe the iterative process for solving the integral equation

$$
f(x)=x+\lambda \int_{0}^{x} x t f(t) d t
$$

specifying the transformation to be iterated and explaining how this leads to a solution. With $f_{0}(x)=0$ for all x as the starting function, compute the first three iterates, $f_{1}(x)$, $f_{2}(x)$, and $f_{3}(x)$.
c. Show that if f is a solution to the integral equation of part (c), then it is also a solution to the differential equation

$$
f^{\prime \prime}(x)-\lambda x^{2} f^{\prime}(x)-3 \lambda x f(x)=0 \quad \text { with } f(0)=0 \text { and } f^{\prime}(0)=1
$$

Spring $2001 \#$ 3. Let f and g be vectors in a Hilbert space \mathcal{H}.
a. Show that $\|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2}$.
b. Show that $\|f+g\| \cdot\|f-g\| \leq\|f\|^{2}+\|g\|^{2}$.

Spring $2001 \# 4 . \quad$ a. Define what it means for a set \mathcal{L} of vectors in a vector space \mathcal{V} to be linearly independent. (Be careful. Your definition should work for a set \mathcal{L} which might be infinite.)
b. Show that the vectors

$$
\vec{u}=(1,2,3,2) \quad, \quad \vec{v}=(4,3,2,1) \quad, \quad \vec{w}=(-7,1,9,7)
$$

in \mathbb{R}^{4} are linearly dependent (not independent).
b. Show that the set of functions $\mathcal{E}=\left\{e_{n}(t)=\frac{1}{\sqrt{2 \pi}} e^{i n t}: n=0, \pm 1, \pm 2, \pm 3 \ldots\right\}$ is linearly independent as a set of functions on $[-\pi, \pi]$ (vectors in an approipriate function space.)

Spring $2001 \#$ 5. a. Let φ be a continuous function on the interval $[a, b]$.
Define $M_{\varphi}: L^{2}([a, b]) \rightarrow L^{2}([a, b])$ by $\left(M_{\varphi} f\right)(x)=\varphi(x) f(x)$.
Show that M_{φ} is a bounded linear operator on $L^{2}([a, b])$.
b. Let $k(x, t)$ be a continuous function on the square $[a, b] \times[a, b]$.

Define $K: L^{2}([a, b]) \rightarrow L^{2}([a, b])$ by $(K f)(x)=\int_{a}^{b} k(x, t) f(t) d t$.
Show that K is a bounded linear operator on $L^{2}([a, b])$.
Spring 2001 \# 6. Suppose $\mathcal{E}=\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ is an orthonormal basis for a Hilbert space \mathcal{H}. Let \mathcal{M}_{n} be the vector subspace $\operatorname{span}\left(\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\right)$ spanned by the first n basis vectors. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be numbers. For v in \mathcal{H}, put $T v=\sum_{k=1}^{n} \lambda_{k}\left\langle v, e_{k}\right\rangle e_{k}$
a. Show that T is a linear operator from \mathcal{H} into \mathcal{H}.
b Show that T is a bounded linear operator.
c. Show that the operator norm of T is $\|T\|=\max \left(\left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|\right\}\right)$.

Spring 2001 \# 7. For each continuous function f on the interval $[0,1]$, define a function $K f$ on $[0,1]$ by

$$
(K f)(x)=\int_{0}^{1} x^{2} t^{2} f(t) d t=x^{2} \int_{0}^{1} t^{2} f(t) d t
$$

a. Find any nonzero eigenvalues for the operator K and the associated eigenvectors.
b. For given function g, consider the integral equation

$$
f(x)=g(x)+\lambda \int_{0}^{1} x^{2} t^{2} f(t) d t
$$

Use a Neumann series to solve this equation when $g(x)=x$.
c. Find a function $R(x, t, \lambda)$ such that solutions to the integral equation of part (b) are given by

$$
f(x)=g(x)+\lambda \int_{0}^{1} R(x, t, \lambda) g(t) d t
$$

Spring 2001 \# 8. Consider the boundary value problem

$$
-\frac{d}{d x}\left(\frac{d f}{d x}\right)=\phi(x) \quad \text { for } 0 \leq x \leq 1 \quad \text { with } f(0)=f^{\prime}(0) \text { and } f(1)=f^{\prime}(1)
$$

a. Find a function $G(x, t)$ such that solutions to the problem are given by

$$
f(x)=\int_{0}^{1} G(x, t) \phi(t) d t
$$

b. Use the result of part (a) to solve the problem finding $f(x)$ when $\phi(x)=x$ for all x.

