California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination

Linear Analysis Fall 2006 Cooper, Gutarts*, Hoffman, Verona

Do five of the following seven problems.

If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{N} denotes the set of complex numbers.

 \mathbbm{R} denotes the set of real numbers.

 $\operatorname{Re}(z)$ denotes the real part of the complex number z.

Im(z) denotes the imaginary part of the complex number z.

 \bar{z} denotes the complex conjugate of the complex number z.

|z| denotes the absolute value of the complex number z

 $\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval [a, b]. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on [a, b] and $\mathcal{C}([a, b], \mathbb{N})$ the space of all continuous complex valued functions.

 $L^{2}([a, b])$ denotes the space of all functions on the inteval [a, b] such that $\int_{a}^{b} |f(x)|^{2} dx < \infty$

MISCELLANEOUS FACTS

 $\sin(a+b) = \sin a \cos b + \cos a \sin b \qquad \cos(a+b) = \cos a \cos b - \sin a \sin b$ $2\sin a \sin b = \cos(a-b) - \cos(a+b) \qquad 2\cos a \cos b = \cos(a-b) + \cos(a+b)$ $2\sin a \cos b = \sin(a+b) + \sin(a-b) \qquad 2\cos a \sin b = \sin(a+b) - \sin(a-b)$ $\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{1}{4a} \sin(2ax) \qquad \int \cos^2(ax) \, dx = \frac{x}{2} + \frac{1}{4a} \sin(2ax)$ $\int e^{ax} \sin bx \, dx = \frac{e^{ax}(a \sin bx - b \cos bx)}{a^2 + b^2} \qquad \int e^{ax} \cos bx \, dx = \frac{e^{ax}(a \cos bx + b \sin bx)}{a^2 + b^2}$

1

Fall 2006 # 1. a. Find the Fourier series for the function f(x) = x on the interval $[-\pi, \pi]$.

(You may use either the trigonometric or exponential form.)

b. Use the result of part **a** to show that

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}.$$

Fall 2006 # 2. For each continuous function f on the interval [0,1], let Tf be defined by

$$(Tf)(x) = x^{2} + \lambda \int_{0}^{x} (x^{2} - t^{2})f(t) dt.$$

a. Find a range of values of λ for which T is a contraction with respect to the supremum norm, $||f||_{\infty} = \sup\{|f(t)| : t \in [0,1]\}$, on the space C([0,1]) of continuous functions on [0,1].

b. Find a range of values of λ for which T is a contraction with respect to the L^2 -norm, $||f||_2 = \left(\int_0^1 |f(t)|^2 dt\right)^{1/2}$, on the space C([0, 1]) of continuous functions on [0, 1].

c. Explain, with an explicit statement of the formula to be iterated, how to use the contraction mapping principle to generate a sequence of approximation to a solution f for the equation

$$f(x) = x^{2} + \lambda \int_{0}^{x} (x^{2} - t^{2}) f(t) dt$$

Starting with $f_0(x) = 1$, compute the next two approximations, f_1 and f_2 .

Fall 2006 # **3.** For each continuous function f on the interval [0, 1], let Kf be defined by

$$(Kf)(x) = \int_0^1 x^3 t^2 f(t) \, dt.$$

a. Find a function $R(x,t;\lambda)$ such that solutions to the equation $f = g + \lambda K f$ are given by

$$f(x) = g(x) + \lambda \int_0^1 R(x, t; \lambda)g(t) dt$$

for each continuous function g on [0, 1].

b. Find a function f on [0, 1] such that

$$f(x) = x + \int_0^1 x^3 t^2 f(t) dt$$
 for each x in [0, 1].

Fall 2006 # 4. For specified functions h on [0, 1], consider the boundary value problem

(BVP)
$$-\frac{d}{dx} \left[e^x f'(x) \right] = h(x)$$
 for x in $[0, 1]$ with $f(0) = 0$ and $f'(1) = 0$.

a. Find a function G(x, t) such that solutions to (BVP) are given by

$$f(x) = \int_0^1 G(x,t)h(t) \, dt.$$

b. Solve the problem (BVP) with h(x) = 1 for all x in [0, 1].

Fall 2006 # 5. Which of the following are vector spaces over \mathbb{R} ?

For each, give a yes or no answer, and explain how you know that it is or is not. (You may assume that that spaces $C(\mathbb{R};\mathbb{R})$ and \mathbb{R}^d of all continuous real valued functions on \mathbb{R} and of all ordered *d*-tuples of real numbers are vector spaces over \mathbb{R} with the usual operations)

- **a.** $\mathcal{A} = \{ f \in C(\mathbb{R}; \mathbb{R}) : f'' \text{ exists and } f''(x) + 3f'(x) + 5f(x) = 0 \text{ for all } x \text{ in } \mathbb{R} \}$
- **b.** $\mathcal{B} = \{f \in C(\mathbb{R}; \mathbb{R}) : f'' \text{ exists and } f''(x) + 3f'(x) + 5f(x) = \cos x \text{ for all } x \text{ in } \mathbb{R}\}$
- **c.** C = the set of all 2 × 2 matrices with entries in \mathbb{R} with the operations of matrix addition and scalar multiplication
- **d.** \mathcal{D} = the set of all 2 × 2 matrices with entries in \mathbb{R} and determinant 0 with the operations of matrix addition and scalar multiplication

Fall 2006 # 6. a. (4 points) What is the dimension of the space of all linear operators from \mathbb{R}^2 to \mathbb{R}^2 . (Justify your answer.)

b. (8 points) Show that if T is a linear operator from \mathbb{R}^2 into \mathbb{R}^2 , then there is a nonzero polynomial p with p(T) = 0.

(Do not just quote a theorem from linear algebra. You must prove something here. This is easier than that theorem anyway.)

(Suggestion: Think about the set of powers of T.)

c. (8 points) Is the conclusion of part b true for every continuous linear operator from an infinite dimension Hilbert space into itself? (Prove or give a counterexample.)

(Suggestion: Consider the shift operator from ℓ^2 into ℓ^2 given by $S((x_1, x_2, x_3, \dots)) = (0, x_1, x_2, x_3, \dots)$ and the first basis vector $e_1 = (1, 0, 0, 0, \dots)$)

Fall 2006 # 7. Suppose U and T are bounded linear operators on a Hilbert space \mathcal{H} over the complex numbers such that $U^*U = I$ and $T^* = -T$. Show each of the following.

a. If μ is an eigenvalue for U, then $|\mu| = 1$.

b. If λ is an eigenvalue for T, then λ is purely imaginary in the sense that there is a real number b with $\lambda = ib$. That is, $\text{Re}(\lambda) = 0$.

Suggestion: What can you do with $\langle Uv, Uv \rangle$ and $\langle Tv, v \rangle$.

End of Exam