California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Linear Analysis Fall 2005 Gutarts, Hoffman*, Verona

Do five of the following seven problems.

If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.

 $\mathbb R$ denotes the set of real numbers.

 $\operatorname{Re}(z)$ denotes the real part of the complex number z.

Im(z) denotes the imaginary part of the complex number z.

 \bar{z} denotes the complex conjugate of the complex number z.

|z| denotes the absolute value of the complex number z

 $\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval [a, b]. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on [a, b] and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.

 $L^2([a,b])$ denotes the space of all functions on the inteval [a,b] such that $\int_a^b \left|f(x)\right|^2\,dx < \infty$

MISCELLANEOUS FACTS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$2\sin a \sin b = \cos(a-b) - \cos(a+b)$$

$$2\sin a \cos b = \sin(a+b) + \sin(a-b)$$

$$\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{1}{4a} \sin(2ax)$$

$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}(a \sin bx - b \cos bx)}{a^2 + b^2}$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$

$$2\cos a \sin b = \sin(a+b) - \sin(a-b)$$

$$\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{1}{4a} \sin(2ax)$$

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}(a\cos bx + b\sin bx)}{a^2 + b^2}$$

Fall 2005 # 1. Let a be a nonzero real constant and let f be the function defined by putting

$$f(t) = \begin{cases} e^{at} \text{ for } -\pi < t < \pi \\ 0 \text{ for } t = \pm \pi \end{cases}$$

and extending to be 2π -periodic.

a. Compute the Fourier series for f. (Trigonometric or exponential, your choice, but the exponential is probably easier.)

b. Show that
$$\frac{1}{a^2} + 2\sum_{k=1}^{\infty} \frac{1}{a^2 + k^2} = \frac{\pi}{a} \frac{e^{\pi a} + e^{-\pi a}}{e^{\pi a} - e^{-\pi a}}$$

Fall 2005 # 2. For each of the following families of functions decide and prove whether they are or are not linearly independent as functions on the interval $[-\pi,\pi]$.

- **a.** $\mathcal{A} = \{f_1, f_2, f_3\}$ where $f_1(x) = 1$, $f_2(x) = \cos x$, and $f_3(x) = \sin x$ for all x.
- **b.** $\mathcal{B} = \{g_1, g_2, g_3\}$ where $g_1(x) = 1$, $g_2(x) = \cos^2 x$, and $g_3(x) = \sin^2 x$ for all x.

Fall 2005 # 3. Let \mathcal{V} be the space of all continuous real valued functions on $[-\pi,\pi]$ with the norm $||f|| = (1/\pi) \int_{-\pi}^{\pi} |f(t)|^2 dt$. For each positive integer n, let \mathcal{T}_n be the subspace of \mathcal{V} consisting of all trigonometric

polynomials with real coefficients and order no more than n.

$$\mathcal{T}_n = \{q(t) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kt + b_k \sin kt) : a_k \in \mathbb{R} \text{ and } b_k \in \mathbb{R} \quad \forall k\}$$

Let \mathcal{T} be the subspace of \mathcal{V} consisting of all trigonometric polynomials with real coefficients of all orders.

Let D be the differentiation operator, Df = f'.

- **a.** Show that D maps \mathcal{T}_n into \mathcal{T}_n for each n and that D maps \mathcal{T} into \mathcal{T} .
- **b.** Show that D is bounded as a linear operator from \mathcal{T}_n into \mathcal{T}_n and find the operator norm of the restriction $D|_{\mathcal{T}_n}$.
- **c.** Show that D is not bounded as a linear operator from \mathcal{T} into \mathcal{T} .

Fall 2005 # 4. Suppose \mathcal{M} is a subset of a Hilbert space \mathcal{H} and that T is a bounded linear operator from \mathcal{H} into a Hilbert space \mathcal{K} .

- **a.** Show that the orthogonal complement, \mathcal{M}^{\perp} , of \mathcal{M} is a vector subspace of \mathcal{H} .
- **b.** Show that $\ker(T) = \{f \in \mathcal{H} : Tf = 0\}$ is a vector subspace of \mathcal{H} .
- **c.** Show that range $(T) = \{Tf \in \mathcal{K} : f \in \mathcal{H}\}$ is a vector subspace of \mathcal{K} .
- **d.** Show that T maps $(\ker(T))^{\perp}$ one to one onto $\operatorname{range}(T)$

Fall 2005 # 5. Let (x, y) and (a, b) represent vectors in \mathbb{R}^2 .

a. For each of the following decide whether the formula given for ||(x, y)|| defines a norm on \mathbb{R}^2 . If it does, prove it. If it does not, explain how you know it does not.

(i) ||(x,y)|| = 2|x|(ii) $||(x,y)|| = x^2 + y^2$

b. For each of the following decide whether the formula given for $\langle (a, b), (x, y) \rangle$ defines an inner product on \mathbb{R}^2 . If it does, prove it. If it does not, explain how you know it does not.

- (i) $\langle (a,b), (x,y) \rangle = 2ax + 3by$
- (ii) $\langle (a,b), (x,y) \rangle = 2ax 3by$

Fall 2005 # 6. For each continuous function f on the interval [0, 1], let the function Kf on [0,1] be given by $(Kf)(x) = \int_0^1 (2+6xt)f(t) dt$.

- **a.** Find all nonzero eigenvalues and the corresponding eigenfunctions for the operator K.
- **b.** Find a solution f to the integral equation $f(x) = 1 + \int_{0}^{1} (2 + 6xt)f(t) dt$.

Fall 2005 # 7. For f in the space C([0, 1]) of all continuous real valued functions on the interval [0, 1] and numerical parameter λ , let Tf be the function on [0, 1] defined by

$$(Tf)(x) = 1 + \lambda \int_0^x x t f(t) \, dt$$

a. Find a range of values of the parameter λ for which the transformation T is a contraction on C([0,1]) with respect the norm $||f||_{\infty} = \sup\{|f(t)| : t \in [0,1]\}.$

b. With $f_0 = 1$ for all x, find the next two iterates f_1 and f_2 in the iterative process for solving the integral equation

$$f(x) = 1 + \lambda \int_0^x x t f(t) \, dt.$$

c. If f is a solution to the integral equation in part **b**, then f is also a solution to a differential initial value problem of the form

$$f''(x) + a(x)f'(x) + b(x)f(x) = \phi(x)$$
 with $f(0) = A$ and $f'(0) = B$

Find a(x), b(x), $\phi(x)$, A, and B.

End of Exam