California State University - Los Angeles
Department of Mathematics
Master's Degree Comprehensive Examination
Linear Analysis Fall 2004
Cooper*, Hoffman, Verona

Do five of the following eight problems. Each problem is worth 20 points.
If you attempt more than 5 , the best 5 will be counted.
Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z
$\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval $[a, b]$. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on $[a, b]$ and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.
$L^{2}([a, b])$ denotes the space of all functions on the inteval $[a, b]$ such that $\int_{a}^{b}|f(x)|^{2} d x<$ ∞

MISCELLANEOUS FACTS

$$
\begin{array}{ll}
\sin (a+b)=\sin a \cos b+\cos a \sin b & \cos (a+b)=\cos a \cos b-\sin a \sin b \\
2 \sin a \sin b=\cos (a-b)-\cos (a+b) & 2 \cos a \cos b=\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b=\sin (a+b)+\sin (a-b) & 2 \cos a \sin b=\sin (a+b)-\sin (a-b) \\
\int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{1}{4 a} \sin (2 a x) & \int \cos ^{2}(a x) d x=\frac{x}{2}+\frac{1}{4 a} \sin (2 a x) \\
\int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) & \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x)
\end{array}
$$

Fall 2004 \# 1. Let \mathcal{H} be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and associated norm $\|\cdot\|$.

Let $\left\{v_{n}\right\}_{n=1}^{\infty}$ be a sequence of vectors in \mathcal{H} and v a vector in \mathcal{H}.
We say the sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ converges strongly to v if $\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|=0$.
We say the sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ converges weakly to v if $\lim _{n \rightarrow \infty}\left\langle v_{n}, w\right\rangle=\langle v, w\rangle$ for every w in \mathcal{H}
a. Show that if the sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ converges strongly to v, then it also converges weakly to v.
b. Show that if $\left\{e_{n}\right\}_{n=1}^{\infty}$ is an orthonormal sequence in \mathcal{H}, then $\left\{e_{n}\right\}_{n=1}^{\infty}$ converges weakly to the zero vector.
c. Show that in an infinite dimensional Hilbert space weak convergence of a sequence to a limit v does not imply strong convergence of the sequence to v.

Fall $2004 \#$ 2. Let $T: \mathcal{H} \rightarrow \mathcal{H}$ be a bounded linear operator from a Hilbert space \mathcal{H} into itself.

Let $\operatorname{range}(T)=\{T x: x \in \mathcal{H}\} \quad$ Let $\operatorname{ker}(T)=\{x \in \mathcal{H}: T x=0\}$
a. (5 pts) Show that range (T) and $\operatorname{ker}(T)$ are vector subspaces of \mathcal{H}.
b. (5 pts) Show that $\operatorname{ker}(T)$ is a closed subset of \mathcal{H}.
c. $(3 \mathrm{pts})$ Give a definition of the orthogonal complement, A^{\perp}, of a subset A of \mathcal{H}.
d. $(7 \mathrm{pts})$ Show that $\operatorname{ker}(T)=\left(\operatorname{range}\left(T^{*}\right)\right)^{\perp}$

Fall $2004 \#$ 3. For f in $L^{2}([-1,1])$, define $K f$ by $(K f)(x)=\int_{-1}^{1}\left(5 x+7 x^{3} t^{3}\right) f(t) d t$.
a. Find any nonzero eigenvalues and the associated eigenvectors for the integral operator K.
b. Find a function $R(x, t ; \lambda)$ such that solutions f to the integral equation

$$
f(x)=g(x)+\lambda \int_{-1}^{1}\left(5 x+7 x^{3} t^{3}\right) f(t) d t
$$

for a known function g are given by

$$
f(x)=g(x)+\lambda \int_{-1}^{1} R(x, t ; \lambda) g(t) d t
$$

Fall $2004 \# 4$. Let \mathcal{P}^{2} be the space of all polynomials with real coefficients.
Use the inner product $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$ on \mathcal{P}^{2}.
a. Find a basis for \mathcal{P}^{2} which is orthonormal with respect to this inner product.
b. Find constants a, b, and c which minimize the quantity $J=\int_{0}^{1}\left|t^{4}-a-b t-c t^{2}\right|^{2} d t$

Fall $2004 \#$ 5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by setting $f(x)=-1$ for $-\pi<x<0$, $f(x)=1$ for $0 \leq x \leq \pi$, and extending so that f is 2π-periodic.
a. Compute the Fourier series for f. (Either the exponential or trigonometric form, your choice.)
b. Use the result of part (a) to show that $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\frac{\pi^{2}}{8}$

Fall 2004 \# 6. Let \mathcal{V} the space $C([-\pi, \pi])$ of all continuous complex valued functions on $[-\pi, \pi]$

For f and g in \mathcal{V}, let $\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} d t$.
For f in \mathcal{V}, let $\phi(f)=f(0)$. For integers k, let $e_{k}(t)=e^{i k t}$.
For positive integer n, let \mathcal{M}_{n} be the space spanned by $\left\{e_{k}:-n \leq k \leq n\right\}$.
a. Show that ϕ is a linear functional on $\mathcal{V}=C([-\pi, \pi])$.
b. Show that ϕ is continuous when the uniform norm, $\|f\|_{\infty}=\sup \{|f(t)|: t \in[-\pi, \pi]\}$, is used on $C([-\pi, \pi])$.
c. Find trigonometric polynomials $q_{n}(t)=\sum_{j=-n}^{n} \lambda_{j} e_{j}(t)$ in \mathcal{M}_{n} such that $\phi(f)=\left\langle f, q_{n}\right\rangle$ for all f in \mathcal{M}_{n}.
d. Show that when the L^{2}-norm associated with $\langle\cdot, \cdot\rangle$ is used on $C([-\pi, \pi])$, then the operator norm of the restriction of ϕ to \mathcal{M}_{n} is $\sqrt{2 n+1}$.
e. Show that ϕ is not continuous on $C([-\pi, \pi])$ when the norm of part \mathbf{d} is used on $C([-\pi, \pi])$.

Fall 2004\#7. Suppose p is a differentiable function on $[a, b]$ with p^{\prime} continuous and $p(x)>0$ for all x in $[a, b]$. Let L be the differential operator defined for twice differentiable functions f on $[a, b]$ by $(L f)(x)=-\frac{d}{d x}\left[p(x) f^{\prime}(x)\right]$

Let \mathcal{V} be the space of all real valued twice differentiable functions f on $[a, b]$ with $f^{\prime \prime}$ continuous and $f(a)=f(b)=0$. With the inner product $\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t$ on $\mathcal{C}([a, b], \mathbb{R})$, prove each of the following
a. $\langle L f, g\rangle=\langle f, L g\rangle$ for all f and g in \mathcal{V}.
(Suggestion: Compute each side separately and compare the results.)
b. If $\lambda \neq \mu$ are distinct real numbers and f and g are in \mathcal{V} with $L f=\lambda f$ and $L g=\mu g$, then $\langle f, g\rangle=0$.
(Note: Do not just quote a known fact about self-adjoint operators)

End of Exam

