California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Linear Analysis Fall 2004 Cooper*, Hoffman, Verona

Do five of the following eight problems. Each problem is worth 20 points.

If you attempt more than 5, the best 5 will be counted.

Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.

 $\mathbb R$ denotes the set of real numbers.

 $\operatorname{Re}(z)$ denotes the real part of the complex number z.

Im(z) denotes the imaginary part of the complex number z.

 \bar{z} denotes the complex conjugate of the complex number z.

|z| denotes the absolute value of the complex number z

 $\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval [a, b]. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on [a, b] and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.

 $L^2([a,b])$ denotes the space of all functions on the inteval [a,b] such that $\int_a^b \left|f(x)\right|^2\,dx < \infty$

MISCELLANEOUS FACTS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$2\sin a \sin b = \cos(a-b) - \cos(a+b)$$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$

$$2\cos a \sin b = \sin(a+b) - \sin(a-b)$$

$$\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{1}{4a} \sin(2ax)$$

$$\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{1}{4a} \sin(2ax)$$

$$\int x \sin(ax) \, dx = \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax)$$

$$\int x \cos(ax) \, dx = \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax)$$

Fall 2004 # 1. Let \mathcal{H} be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and associated norm $\|\cdot\|$.

Let $\{v_n\}_{n=1}^{\infty}$ be a sequence of vectors in \mathcal{H} and v a vector in \mathcal{H} . We say the sequence $\{v_n\}_{n=1}^{\infty}$ converges strongly to v if $\lim_{n \to \infty} ||v_n - v|| = 0$. We say the sequence $\{v_n\}_{n=1}^{\infty}$ converges weakly to v if $\lim_{n \to \infty} \langle v_n, w \rangle = \langle v, w \rangle$ for every w in \mathcal{H}

- - **a.** Show that if the sequence $\{v_n\}_{n=1}^{\infty}$ converges strongly to v, then it also converges weakly to v.
 - **b.** Show that if $\{e_n\}_{n=1}^{\infty}$ is an orthonormal sequence in \mathcal{H} , then $\{e_n\}_{n=1}^{\infty}$ converges weakly to the zero vector.
 - c. Show that in an infinite dimensional Hilbert space weak convergence of a sequence to a limit v does not imply strong convergence of the sequence to v.

Fall 2004 # 2. Let $T : \mathcal{H} \to \mathcal{H}$ be a bounded linear operator from a Hilbert space \mathcal{H} into itself.

Let range $(T) = \{Tx : x \in \mathcal{H}\}$ Let $\ker(T) = \{x \in \mathcal{H} : Tx = 0\}$

- **a.** (5 pts) Show that range(T) and ker(T) are vector subspaces of \mathcal{H} .
- **b.** (5 pts) Show that $\ker(T)$ is a closed subset of \mathcal{H} .
- **c.** (3 pts) Give a definition of the orthogonal complement, A^{\perp} , of a subset A of \mathcal{H} .
- **d.** (7 pts) Show that $\ker(T) = (\operatorname{range}(T^*))^{\perp}$

Fall 2004 # 3. For f in $L^2([-1,1])$, define Kf by $(Kf)(x) = \int_{-1}^{1} (5x + 7x^3t^3)f(t) dt$.

- **a.** Find any nonzero eigenvalues and the associated eigenvectors for the integral operator K.
- **b.** Find a function $R(x,t;\lambda)$ such that solutions f to the integral equation

$$f(x) = g(x) + \lambda \int_{-1}^{1} (5x + 7x^3t^3) f(t) dt$$

for a known function g are given by

$$f(x) = g(x) + \lambda \int_{-1}^{1} R(x,t;\lambda)g(t) dt.$$

Fall 2004 # 4. Let \mathcal{P}^2 be the space of all polynomials with real coefficients. Use the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$ on \mathcal{P}^2 .

a. Find a basis for \mathcal{P}^2 which is orthonormal with respect to this inner product.

b. Find constants a, b, and c which minimize the quantity $J = \int_0^1 |t^4 - a - bt - ct^2|^2 dt$

Fall 2004 # 5. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by setting f(x) = -1 for $-\pi < x < 0$, f(x) = 1 for $0 \le x \le \pi$, and extending so that f is 2π -periodic.

a. Compute the Fourier series for f. (Either the exponential or trigonometric form, your choice.)

b. Use the result of part (a) to show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$

Fall 2004 # 6. Let \mathcal{V} the space $C([-\pi,\pi])$ of all continuous complex valued functions on $[-\pi,\pi]$

For f and g in \mathcal{V} , let $\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$. For f in \mathcal{V} , let $\phi(f) = f(0)$. For integers k, let $e_k(t) = e^{ikt}$. For positive integer n, let \mathcal{M}_n be the space spanned by $\{e_k : -n \leq k \leq n\}$.

- **a.** Show that ϕ is a linear functional on $\mathcal{V} = C([-\pi, \pi])$.
- **b.** Show that ϕ is continuous when the uniform norm, $||f||_{\infty} = \sup\{|f(t)| : t \in [-\pi, \pi]\}$, is used on $C([-\pi, \pi])$.
- **c.** Find trigonometric polynomials $q_n(t) = \sum_{j=-n}^n \lambda_j e_j(t)$ in \mathcal{M}_n such that $\phi(f) = \langle f, q_n \rangle$ for all f in \mathcal{M}_n .
- **d.** Show that when the L^2 -norm associated with $\langle \cdot, \cdot \rangle$ is used on $C([-\pi, \pi])$, then the operator norm of the restriction of ϕ to \mathcal{M}_n is $\sqrt{2n+1}$.
- e. Show that ϕ is not continuous on $C([-\pi,\pi])$ when the norm of part **d** is used on $C([-\pi,\pi])$.

Fall 2004 # 7. Suppose p is a differentiable function on [a, b] with p' continuous and p(x) > 0 for all x in [a, b]. Let L be the differential operator defined for twice differentiable functions f on [a, b] by $(Lf)(x) = -\frac{d}{dx}[p(x)f'(x)]$

Let \mathcal{V} be the space of all real valued twice differentiable functions f on [a, b] with f'' continuous and f(a) = f(b) = 0. With the inner product $\langle f, g \rangle = \int_a^b f(t)g(t) dt$ on $\mathcal{C}([a, b], \mathbb{R})$, prove each of the following

a. $\langle Lf, g \rangle = \langle f, Lg \rangle$ for all f and g in \mathcal{V} .

(Suggestion: Compute each side separately and compare the results.)

b. If $\lambda \neq \mu$ are distinct real numbers and f and g are in \mathcal{V} with $Lf = \lambda f$ and $Lg = \mu g$, then $\langle f, g \rangle = 0$.

(Note: Do not just quote a known fact about self-adjoint operators)

End of Exam