California State University - Los Angeles

Department of Mathematics
Master's Degree Comprehensive Examination
Linear Analysis Fall 2003
Cooper*, Hoffman, Verona

Do five of the following eight problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z
$\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval $[a, b]$. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on $[a, b]$ and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.
$L^{2}([a, b])$ denotes the space of all functions on the inteval $[a, b]$ such that $\int_{a}^{b}|f(x)|^{2} d x<$ ∞

MISCELLANEOUS FACTS

$$
\begin{array}{ll}
\sin (a+b)=\sin a \cos b+\cos a \sin b & \cos (a+b)=\cos a \cos b-\sin a \sin b \\
2 \sin a \sin b=\cos (a-b)-\cos (a+b) & 2 \cos a \cos b=\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b=\sin (a+b)+\sin (a-b) & 2 \cos a \sin b=\sin (a+b)-\sin (a-b) \\
\int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{1}{4 a} \sin (2 a x) & \int \cos ^{2}(a x) d x=\frac{x}{2}+\frac{1}{4 a} \sin (2 a x) \\
\int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) & \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x)
\end{array}
$$

Fall $2003 \# 1$. For each of the following, determine if it is a vector space over \mathbb{R}. Give reasons for your answers.
a. The set of all integrable real valued functions f on $[0,1]$ with $\int_{0}^{1} f(t) d t=0$.
b. The set of all polynomials with real coefficients and even degree.
c. The set of all differentiable real valued functions on \mathbb{R} with $f(0)+f^{\prime}(0)=0$ and $f(1)-f^{\prime}(1)=0$.
d. The set of all 2×2 matrices with real entries and determinant equal to 0 .

Fall 2003 \# 2. For continuous complex valued functions f and g on the interval $[0,1]$, put

$$
[f, g]=\int_{0}^{1} f(t) \overline{g(t)} e^{t} d t
$$

a. Show that this defines an inner product on the space $C([0,1], \mathbb{C})$ of continuous complex valued functions on $[0,1]$.
(You may use your knowledge of the known inner product $\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t$ on that space.)
b. Find polynomials $q_{0}(x)$ and $q_{1}(x)$ which are orthonormal with respect to the inner product $[\cdot, \cdot]$ and which span the space of polynomials of degree no more than 1 .
(You may use: $\int_{0}^{1} e^{t} d t=e-1 ; \int_{0}^{1} t e^{t} d t=1$; and $\int_{0}^{1} t^{2} e^{t} d t=e-2$.)
Fall 2003 \# 3. Let a be a positive real constant. For x in $[-\pi, \pi]$, put $f(x)=e^{a x}$.
a Compute either the exponential or the trigonometric form of the Fourier series for f on $[-\pi, \pi]$. (Your choice which).
b Use the result of part a. to show that

$$
\sum_{k=1}^{\infty} \frac{1}{a^{2}+k^{2}}=\frac{\pi}{2 a} \frac{e^{\pi a}+e^{-\pi a}}{e^{\pi a}-e^{-\pi a}}-\frac{1}{2 a^{2}}
$$

Fall $2003 \#$ 4. Suppose $\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ is an orthonormal basis for a Hilbert space \mathcal{H} and $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ is a bounded sequence of numbers with $\Lambda=\sup \left\{\left|\lambda_{k}\right|: k=1,2,3, \ldots\right\}$. For f in \mathcal{H}, let

$$
T f=\sum_{k=1}^{\infty} \lambda_{k}\left\langle f, e_{k+1}\right\rangle e_{k}
$$

a. Show that the series for T converges to an element of \mathcal{H}.
b. Show that T is a linear operator on \mathcal{H}.
c. Show that T is bounded as a linear operator on \mathcal{H}.
d. Show that the operator norm $\|T\|$ is equal to Λ.
(If you have trouble with part a, go ahead and do the rest assuming that the limit exists.)

Fall $2003 \#$ 5. For each continuous numerical valued function f on $[0,1]$ define $T f$ by

$$
(T f)(x)=\sin x+\lambda \int_{0}^{x}\left(x-t^{2}\right) f(t) d t
$$

a. Find a range of values of λ for which T is a contraction with respect to the supremum norm on $C([0,1])$. Justify your answer.
b. Find a range of values of λ for which T is a contraction with respect to the L^{2}-norm on $C([0,1])$. Justify your answer.
c. Show that solutions f to the equation $f(x)=(T f)(x)$ satisfy the ordinary differential equation

$$
f^{\prime \prime}(x)+\lambda x(x-1) f^{\prime}(x)+2 \lambda(x-1) f(x)=-\sin x
$$

Fall 2003 \# 6. For f in $L^{2}([0,1])$ define $K f$ by $(K f)(x)=\int_{0}^{1}\left(1+5 x^{2} t^{2}\right) f(t) d t$.
a. Find all nonzero eigenvalues of K and the corresponding eigenfunctions (eigenvectors).
b. Find a function $R(x, t, \lambda)$ such that solutions to the equation

$$
\begin{equation*}
f(x)=g(x)+\lambda \int_{0}^{1}\left(1+5 x^{2} t^{2}\right) f(t) d t \tag{}
\end{equation*}
$$

are given by

$$
f(x)=g(x)+\lambda \int_{0}^{1} R(x, t, \lambda) g(t) d t
$$

c. Solve the equation $(*)$ when $\lambda=1$ and $g(x)=1$ for all x.

Fall 2003 \# 7. Consider the boundary value problem: For known function f on $[0, \pi]$, find a function y on $[0, \pi]$ such that

$$
y^{\prime \prime}(x)+y(x)=f(x) \quad \text { for } 0 \leq x \leq \pi \quad \text { with } y(0)=y^{\prime}(\pi)=0
$$

a. Find a function $G(x, t)$ such that solutions to this problem are given by

$$
y(x)=\int_{0}^{\pi} G(x, t) f(t) d t
$$

b. Use the result of part a to solve for $y(x)$ when $f(x)=x$.

End of Exam

