California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Linear Analysis Fall 2002 Hoffman, Katz, Meyer*

Do **five** of the following eight problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.

 $\mathbb R$ denotes the set of real numbers.

 $\operatorname{Re}(z)$ denotes the real part of the complex number z.

Im(z) denotes the imaginary part of the complex number z.

 \bar{z} denotes the complex conjugate of the complex number z.

|z| denotes the absolute value of the complex number z

 $\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval [a, b]. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on [a, b] and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.

 $L^{2}([a,b])$ denotes the space of all functions on the inteval [a,b] such that $\int_{a}^{b} |f(x)|^{2} dx < \infty$

MISCELLANEOUS FACTS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$2\sin a \sin b = \cos(a-b) - \cos(a+b)$$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$

$$2\cos a \sin b = \sin(a+b) - \sin(a-b)$$

$$\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{1}{4a} \sin(2ax)$$

$$\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{1}{4a} \sin(2ax)$$

$$\int x \sin(ax) \, dx = \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax)$$

$$\int x \cos(ax) \, dx = \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax)$$

Fall 2002 # 1. Let *f* be defined on $[-\pi, \pi]$ by $f(x) = \begin{cases} x + \pi, & \text{for } -\pi \le x \le 0 \\ \pi - x, & \text{for } 0 < x \le \pi \end{cases}$

a. Compute the Fourier series for f on $[-\pi, \pi]$. (Trigonometric or exponential, your choice)

 $1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \frac{1}{9^4} + \dots = \frac{\pi^4}{96}$ Show that b.

Fall 2002 # 2. a. Suppose $\langle \cdot, \cdot \rangle$ is an inner product on a vector space \mathcal{V} and $\|\cdot\|$ is the associated norm. Show that if f and g are vectors in \mathcal{V} , then $\|f + g\|^2 + \|f - g\|^2 = 1$ $2 \| f \|^2 + 2 \| g \|^2.$

b. Show that there is no possible inner product on the space $C([-\pi,\pi])$ of continuous real valued functions on the interval $[-\pi,\pi]$ for which the uniform norm, $\|f\|_{\infty} =$ $\sup\{|f(t)|: t \in [-\pi,\pi]\},$ is the associated norm.

(Hint: What happens if one function is 0 when $x \leq 0$ and the other when $x \geq 0$?)

Fall 2002 # 3. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous real valued functions on the interval [a, b].

a. State definitions for each of the following:

- (i) $f_n \to f$ pointwise on [a, b]

(i) $f_n \to f$ uniformly on [a, b](i) $f_n \to f$ with respect to the L^2 -norm (that is, in L^2 -mean) on [a, b]

Show that if $f_n \to f$ in L^2 -norm, then $\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx$. b.

c. Give an example in which $f_n \to f$ pointwise on [a,b] but $\lim_{n\to\infty} \int_{a}^{b} f_n(x) dx \neq 0$

 $\int_{a}^{b} f(x) \, dx.$

d. Show that if $f_n \to f$ uniformly on [a, b], then $f_n \to f$ in L^2 -norm on [a, b].

Fall 2002 # 4. a. Show that the operator $L = -\frac{d^2}{dx^2}$ acting on the space

$$\mathcal{W} = \{f : [0,1] \to \mathbb{R} : f'' \text{ is continuous }, f(0) = 0, \text{ and } f(1) - f'(1) = 0\}$$

is a symmetric operator with respect to the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$.

b. Show that if f and g are in \mathcal{W} with $Lf = \lambda f$, $Lg = \mu g$ and $\mu \neq \lambda$, then f and g are orthogonal with respect to that inner product.

c. Show that there are infinitely many positive values of the number λ for which the problem

 $Lf = \lambda f$ with f(0) = 0 and f(1) - f'(1) = 0

has nonzero solutions f. (You need not find the λ 's, but, if you don't, then say something about where they are on the positive real axis.)

(Hint: sketch the graphs of y = x and $y = \tan x$ on the same set of axes.)

Fall 2002 # 5. Suppose k(x,t) is a continuous real valued function on the square $[a,b] \times [a,b]$ such that k(x,t) = k(t,x) for all x and t in [a,b]. For each continuous f on [a,b], let Kf be defined by

$$(Kf)(x) = \int_{a}^{b} k(x,t)f(t) dt$$

Suppose $\{\phi_j\}_{j=1}^{\infty}$ is a complete orthonormal family of functions on [a, b] with respect to the innerproduct $\langle f, g \rangle = \int_a^b f(t)\overline{g(t)} dt$ with $K\phi_j = \mu_j\phi_j$. For continuous g on [a, b] and a nonzero number λ , consider the equation

(A)
$$f(x) = g(x) + \lambda \int_{a}^{b} k(x,t)f(t) dt$$

a. Show how to write the solution to equation (A) in terms of g, λ , $\{\phi_j\}_{j=1}^{\infty}$, and $\{\mu_j\}_{j=1}^{\infty}$ if $1/\lambda$ is not one of the μ_j .

b. What happens if $1/\lambda$ is one of the μ_j ?

Fall 2002 # 6. Let \mathcal{W} be the subspace of \mathbb{R}^4 spanned by the vectors $\begin{pmatrix} 2\\0\\2\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$.

- **a.** Use the Gram-Schmidt process to find an orthonormal basis for \mathcal{W} .
- **b.** Find the vector in \mathcal{W} closest to $v = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$. Call it w.
- c. What does the Bessel inequality state for the vectors in (b) (with numerical values)?

Fall 2002 # 7. For each continuous function f on the interval [0, 1], let

$$(Kf)(x) = \int_0^1 f(t) \sin \pi x \sin \pi t \, dt.$$

a. Find a function $R(x,t;\lambda)$ such that the solution to the equation $f = g + \lambda K f$ is given by

$$f(x) = g(x) + \lambda \int_0^1 R(x, t; \lambda)g(t) dt.$$

b. Find a function f such that

$$f(x) = 1 + \int_0^1 f(t) \sin \pi x \sin \pi t \, dt$$

Fall 2002 # 8. For each continuous function f on the interval [0, 1], let

$$(Tf)(x) = x + \lambda \int_0^x f(t) \sin \pi t \, dt$$

a. Find a range of values of the parameter λ for which the transformation T is a contraction with respect to the supremum norm. Justify your answer.

b. Find a range of values of the parameter λ for which the transformation T is a contraction with respect to the L^2 norm. Justify your answer.

c. Describe the iterative process for solving the integral equation

$$f(x) = x + \lambda \int_0^x f(t) \sin \pi t \, dt$$

specifying the transformation to be iterated and explaining how an why this leads to a solution. With $f_0(x) = 0$ for all x as the starting function, compute the iterates $f_1(x)$ and $f_2(x)$.

End of Exam