## California State University - Los Angeles

Department of Mathematics
Master's Degree Comprehensive Examination
Linear Analysis Fall 2002
Hoffman, Katz, Meyer*

Do five of the following eight problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: $\mathbb{C}$ denotes the set of complex numbers.
$\mathbb{R}$ denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number $z$.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number $z$.
$\bar{z}$ denotes the complex conjugate of the complex number $z$.
$|z|$ denotes the absolute value of the complex number $z$
$\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval $[a, b]$. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on $[a, b]$ and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.
$L^{2}([a, b])$ denotes the space of all functions on the inteval $[a, b]$ such that $\int_{a}^{b}|f(x)|^{2} d x<$ $\infty$

## MISCELLANEOUS FACTS

$$
\begin{array}{ll}
\sin (a+b)=\sin a \cos b+\cos a \sin b & \cos (a+b)=\cos a \cos b-\sin a \sin b \\
2 \sin a \sin b=\cos (a-b)-\cos (a+b) & 2 \cos a \cos b=\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b=\sin (a+b)+\sin (a-b) & 2 \cos a \sin b=\sin (a+b)-\sin (a-b) \\
\int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{1}{4 a} \sin (2 a x) & \int \cos ^{2}(a x) d x=\frac{x}{2}+\frac{1}{4 a} \sin (2 a x) \\
\int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) & \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x)
\end{array}
$$

Fall 2002 \# 1. Let $f$ be defined on $[-\pi, \pi]$ by $f(x)= \begin{cases}x+\pi, & \text { for }-\pi \leq x \leq 0 \\ \pi-x, & \text { for } 0<x \leq \pi\end{cases}$
a. Compute the Fourier series for $f$ on $[-\pi, \pi]$.
(Trigonometric or exponential, your choice)
b. Show that $1+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{9^{4}}+\cdots=\frac{\pi^{4}}{96}$

Fall 2002 \# 2. a. Suppose $\langle\cdot, \cdot\rangle$ is an inner product on a vector space $\mathcal{V}$ and $\|\cdot\|$ is the associated norm. Show that if $f$ and $g$ are vectors in $\mathcal{V}$, then $\|f+g\|^{2}+\|f-g\|^{2}=$ $2\|f\|^{2}+2\|g\|^{2}$.
b. Show that there is no possible inner product on the space $C([-\pi, \pi])$ of continuous real valued functions on the interval $[-\pi, \pi]$ for which the uniform norm, $\|f\|_{\infty}=$ $\sup \{|f(t)|: t \in[-\pi, \pi]\}$, is the associated norm.
(Hint: What happens if one function is 0 when $x \leq 0$ and the other when $x \geq 0$ ?)
Fall $2002 \#$ 3. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of continuous real valued functions on the interval $[a, b]$.
a. State definitions for each of the following:
(i) $f_{n} \rightarrow f$ pointwise on $[a, b]$
(i) $f_{n} \rightarrow f$ uniformly on $[a, b]$
(i) $f_{n} \rightarrow f$ with respect to the $L^{2}$-norm (that is, in $L^{2}$-mean) on $[a, b]$
b. Show that if $f_{n} \rightarrow f$ in $L^{2}$-norm, then $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x$.
c. Give an example in which $f_{n} \rightarrow f$ pointwise on $[a, b]$ but $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x \neq$ $\int_{a}^{b} f(x) d x$.
d. Show that if $f_{n} \rightarrow f$ uniformly on $[a, b]$, then $f_{n} \rightarrow f$ in $L^{2}$-norm on $[a, b]$.

Fall $2002 \#$ 4. a. Show that the operator $L=-\frac{d^{2}}{d x^{2}}$ acting on the space

$$
\mathcal{W}=\left\{f:[0,1] \rightarrow \mathbb{R}: f^{\prime \prime} \text { is continuous }, f(0)=0, \text { and } f(1)-f^{\prime}(1)=0\right\}
$$

is a symmetric operator with respect to the inner product $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$.
b. Show that if $f$ and $g$ are in $\mathcal{W}$ with $L f=\lambda f, L g=\mu g$ and $\mu \neq \lambda$, then $f$ and $g$ are orthogonal with respect to that inner product.
c. Show that there are infinitely many positive values of the number $\lambda$ for which the problem

$$
L f=\lambda f \quad \text { with } \quad f(0)=0 \quad \text { and } f(1)-f^{\prime}(1)=0
$$

has nonzero solutions $f$. (You need not find the $\lambda$ 's, but, if you don't, then say something about where they are on the positive real axis.)
(Hint: sketch the graphs of $y=x$ and $y=\tan x$ on the same set of axes.)

Fall $2002 \#$ 5. Suppose $k(x, t)$ is a continuous real valued functin on the square $[a, b] \times[a, b]$ such that $k(x, t)=k(t, x)$ for all $x$ and $t$ in $[a, b]$. For each continuous $f$ on [a,b], let $K f$ be defined by

$$
(K f)(x)=\int_{a}^{b} k(x, t) f(t) d t
$$

Suppose $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ is a complete orthonormal family of functions on $[a, b]$ with respect to the innerproduct $\langle f, g\rangle=\int_{a}^{b} f(t) \overline{g(t)} d t$ with $K \phi_{j}=\mu_{j} \phi_{j}$. For continuous $g$ on $[a, b]$ and a nonzero number $\lambda$, consider the equation

$$
\begin{equation*}
f(x)=g(x)+\lambda \int_{a}^{b} k(x, t) f(t) d t \tag{A}
\end{equation*}
$$

a. Show how to write the solution to equation (A) in terms of $g, \lambda,\left\{\phi_{j}\right\}_{j=1}^{\infty}$, and $\left\{\mu_{j}\right\}_{j=1}^{\infty}$ if $1 / \lambda$ is not one of the $\mu_{j}$.
b. What happens if $1 / \lambda$ is one of the $\mu_{j}$ ?

Fall 2002 \# 6. Let $\mathcal{W}$ be the subspace of $\mathbb{R}^{4}$ spanned by the vectors $\left(\begin{array}{l}2 \\ 0 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)$.
a. Use the Gram-Schmidt process to find an orthonormal basis for $\mathcal{W}$.
b. Find the vector in $\mathcal{W}$ closest to $v=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$. Call it $w$.
c. What does the Bessel inequality state for the vectors in (b) (with numerical values)?

Fall $2002 \#$ 7. For each continuous function $f$ on the interval $[0,1]$, let

$$
(K f)(x)=\int_{0}^{1} f(t) \sin \pi x \sin \pi t d t
$$

a. Find a function $R(x, t ; \lambda)$ such that the solution to the equation $f=g+\lambda K f$ is given by

$$
f(x)=g(x)+\lambda \int_{0}^{1} R(x, t ; \lambda) g(t) d t
$$

b. Find a function $f$ such that

$$
f(x)=1+\int_{0}^{1} f(t) \sin \pi x \sin \pi t d t
$$

Fall $2002 \#$ 8. For each continuous function $f$ on the interval $[0,1]$, let

$$
(T f)(x)=x+\lambda \int_{0}^{x} f(t) \sin \pi t d t
$$

a. Find a range of values of the parameter $\lambda$ for which the transformation $T$ is a contraction with respect to the supremum norm. Justify your answer.
b. Find a range of values of the parameter $\lambda$ for which the transformation $T$ is a contraction with respect to the $L^{2}$ norm. Justify your answer.
c. Describe the iterative process for solving the integral equation

$$
f(x)=x+\lambda \int_{0}^{x} f(t) \sin \pi t d t
$$

specifying the transformation to be iterated and explaining how an why this leads to a solution. With $f_{0}(x)=0$ for all $x$ as the starting function, compute the iterates $f_{1}(x)$ and $f_{2}(x)$.

## End of Exam

