California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Linear Analysis Fall 2001 Hoffman*, Meyer, Verona

Do **five** of the following seven problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.

 $\mathbb R$ denotes the set of real numbers.

 $\operatorname{Re}(z)$ denotes the real part of the complex number z.

Im(z) denotes the imaginary part of the complex number z.

 \bar{z} denotes the complex conjugate of the complex number z.

|z| denotes the absolute value of the complex number z

 $\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval [a, b]. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on [a, b] and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.

 $L^{2}([a,b])$ denotes the space of all functions on the inteval [a,b] such that $\int_{a}^{b} |f(x)|^{2} dx < \infty$

MISCELLANEOUS FACTS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$2\sin a \sin b = \cos(a-b) - \cos(a+b)$$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$

$$2\cos a \sin b = \sin(a+b) - \sin(a-b)$$

$$\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{1}{4a} \sin(2ax)$$

$$\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{1}{4a} \sin(2ax)$$

$$\int x \sin(ax) \, dx = \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax)$$

$$\int x \cos(ax) \, dx = \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax)$$

Fall 2001 # 1. Let (x, y) and (a, b) represent points in \mathbb{R}^2 .

a. For each of the following decide whether the formula given for ||(x, y)|| defines a norm on \mathbb{R}^2 . If it does, prove it. If it does not, explain how you know it does not.

- (i) ||(x,y)|| = 2|x| + 3|y|(ii) $||(x,y)|| = x^2 + y^2$

b. For each of the following decide whether the formula given for $\langle (a, b), (x, y) \rangle$ defines an inner product on \mathbb{R}^2 . If it does, prove it. If it does not, explain how you know it does not.

- (i) $\langle (a,b), (x,y) \rangle = 2ax + 3by$
- (ii) $\langle (a,b), (x,y) \rangle = 2ax 3by$

Fall 2001 # 2. Let \mathcal{P}^2 be the space of all polynomials of degree no more than 2 with the inner product $\langle f, g \rangle = \int_{-1}^{1} f(t) \overline{g(t)} dt$ and the associated norm.

For
$$f$$
 in \mathcal{P}^2 , let $\phi(f) = f'(0)$.

- Show that ϕ is a linear functional on \mathcal{P}^2 . a.
- Find a polynomial q in \mathcal{P}^2 such that $\phi(f) = \langle f, q \rangle$ for all f in \mathcal{P}^2 . b.
- Show that ϕ is continuous with respect to the specified norm on \mathcal{P}^2 . c.
- Find the operator norm of ϕ as a linear functional on \mathcal{P}^2 (with the specified norm). d.

Fall 2001 # 3. Consider the boundary value problem

(*)
$$\frac{d}{dx}\left[\frac{1}{x^2}\frac{dy}{dx}\right] = f(x) \text{ for } 1 \le x \le 2 \text{ with } y'(1) = 0 \text{ and } y(2) = 0.$$

Find G(x,t) such that the solutions to (*) for known function f are given by a.

$$y(x) = \int_1^2 G(x,t)f(t) \, dt$$

b. Use the function found in part \mathbf{a} to solve the boundary value problem (*) with f(x) = 3 for all x.

Fall 2001 # 4. Let $\mathcal{H} = \{f \in C([0,\pi]) : f(0) = 0\}$ with the inner product $\langle f, g \rangle =$ $\frac{2}{\pi} \int_0^{\pi} f(t) \overline{g(t)} dt.$ For n = 1, 2, 3, ... let $s_n(x) = \sin nx$. Let $S = \{s_1, s_2, s_3, \dots\}.$ **a.** Show \mathcal{S} is an orthonormal family in \mathcal{H} . **b.** Show $\mathcal{S}^{\perp} = \{0\}$ Suggestion: For f in \mathcal{H} , define f_o on $[-\pi,\pi]$ by putting $f_o(x) = f(x)$ for $x \ge 0$ and

 $f_o(x) = -f(-x)$ for x < 0. Then use your knowledge of the trigonometric family of functions $\mathcal{T} = \{1/\sqrt{2}, \cos x, \sin x \cos 2x, \sin 2x, \dots\}$ on $[-\pi, \pi]$

Fall 2001 # 5. For f in $L^2[(0,1])$, define Kf by

$$(Kf)(x) = \int_0^1 (1 - 3xt)f(t) \, dt.$$

Find any nonzero eigenvalues and the associated eigenfunctions for the integral opa. erator K.

Find a function $R(x,t;\lambda)$ such that solutions f to the integral equation b.

$$f(x) = g(x) + \lambda \int_0^1 (1 - 3xt) f(t) \, dt$$

for known function q are given by

(*)
$$f(x) = g(x) + \lambda \int_0^1 R(x, t; \lambda) g(t) dt$$

Solve the equation (*) when $\lambda = 1$ and g(x) = 1 for all x. c.

Fall 2001 # 6. Let \mathcal{P}^1 be the space of all polynomials of degree no more than 1 with the inner product $\langle f, g \rangle = \int_0^2 f(t) \overline{g(t)} dt$

Find a basis for \mathcal{P}^1 which is orthonormal with respect to that inner product a.

Find constants a and b which make the quantity $J = \int_{0}^{2} \left|t^{2} - a - bt\right|^{2} dt$ as small as b possible.

Fall 2001 # 7. For each continuous function f on the interval [01, 1] define a function Tf by

$$(Tf)(x) = x - \lambda \int_0^x (x - t)f(t) dt.$$

Find a range of values for the parameter λ for which the transformation T is a a. contraction with respect to the supremum norm. Justify your answer.

b. Find a range of values for the parameter λ for which the transformation T is a contraction with respect to the L^2 norm. Justify your answer.

Describe the iterative process for solving the integral equation c.

$$f(x) = x - \lambda \int_0^x (x - t) f(t) dt$$

specifying the transformation to be iterated and explaining how this leads to a solution. With $f_0(x) = 0$ for all x as the starting function, compute the first three iterates, $f_1(x)$, $f_2(x)$, and $f_3(x)$.

End of Exam