California State University - Los Angeles

Department of Mathematics
Master's Degree Comprehensive Examination
Linear Analysis Fall 2001
Hoffman*, Meyer, Verona

Do five of the following seven problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z
$\mathcal{C}([a, b])$ denotes the space of all continuous functions on the interval $[a, b]$. If there is need to specify the possible values, $\mathcal{C}([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on $[a, b]$ and $\mathcal{C}([a, b], \mathbb{C})$ the space of all continuous complex valued functions.
$L^{2}([a, b])$ denotes the space of all functions on the inteval $[a, b]$ such that $\int_{a}^{b}|f(x)|^{2} d x<$ ∞

MISCELLANEOUS FACTS

$$
\begin{array}{ll}
\sin (a+b)=\sin a \cos b+\cos a \sin b & \cos (a+b)=\cos a \cos b-\sin a \sin b \\
2 \sin a \sin b=\cos (a-b)-\cos (a+b) & 2 \cos a \cos b=\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b=\sin (a+b)+\sin (a-b) & 2 \cos a \sin b=\sin (a+b)-\sin (a-b) \\
\int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{1}{4 a} \sin (2 a x) & \int \cos ^{2}(a x) d x=\frac{x}{2}+\frac{1}{4 a} \sin (2 a x) \\
\int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) & \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x)
\end{array}
$$

Fall $2001 \#$ 1. Let (x, y) and (a, b) represent points in \mathbb{R}^{2}.
a. For each of the following decide whether the formula given for $\|(x, y)\|$ defines a norm on \mathbb{R}^{2}. If it does, prove it. If it does not, explain how you know it does not.
(i) $\|(x, y)\|=2|x|+3|y|$
(ii) $\|(x, y)\|=x^{2}+y^{2}$
b. For each of the following decide whether the formula given for $\langle(a, b),(x, y)\rangle$ defines an inner product on \mathbb{R}^{2}. If it does, prove it. If it does not, explain how you know it does not.
(i) $\langle(a, b),(x, y)\rangle=2 a x+3 b y$
(ii) $\langle(a, b),(x, y)\rangle=2 a x-3 b y$

Fall $2001 \# 2 . \quad$ Let \mathcal{P}^{2} be the space of all polynomials of degree no more than 2 with the inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) \overline{g(t)} d t$ and the associated norm.

For f in \mathcal{P}^{2}, let $\phi(f)=f^{\prime}(0)$.
a. Show that ϕ is a linear functional on \mathcal{P}^{2}.
b. Find a polynomial q in \mathcal{P}^{2} such that $\phi(f)=\langle f, q\rangle$ for all f in \mathcal{P}^{2}.
c. Show that ϕ is continuous with respect to the specified norm on \mathcal{P}^{2}.
d. Find the operator norm of ϕ as a linear functional on \mathcal{P}^{2} (with the specified norm).

Fall 2001 \# 3. Consider the boundary value problem

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{1}{x^{2}} \frac{d y}{d x}\right]=f(x) \quad \text { for } 1 \leq x \leq 2 \quad \text { with } \quad y^{\prime}(1)=0 \text { and } y(2)=0 \tag{}
\end{equation*}
$$

a. Find $\mathrm{G}(\mathrm{x}, \mathrm{t})$ such that the solutions to $\left(^{*}\right)$ for known function f are given by

$$
y(x)=\int_{1}^{2} G(x, t) f(t) d t
$$

b. Use the function found in part a to solve the boundary value problem $\left(^{*}\right)$ with $f(x)=3$ for all x.

Fall 2001 \# 4. Let $\mathcal{H}=\{f \in C([0, \pi]): f(0)=0\}$ with the inner product $\langle f, g\rangle=$ $\frac{2}{\pi} \int_{0}^{\pi} f(t) \overline{g(t)} d t$.

For $n=1,2,3, \ldots$ let $s_{n}(x)=\sin n x$.
Let $\mathcal{S}=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$.
a. Show \mathcal{S} is an orthonormal family in \mathcal{H}.
b. Show $\mathcal{S}^{\perp}=\{0\}$

Suggestion: For f in \mathcal{H}, define f_{o} on $[-\pi, \pi]$ by putting $f_{o}(x)=f(x)$ for $x \geq 0$ and $f_{o}(x)=-f(-x)$ for $x<0$. Then use your knowledge of the trigonometric family of functions $\mathcal{T}=\{1 / \sqrt{2}, \cos x, \sin x \cos 2 x, \sin 2 x, \ldots\}$ on $[-\pi, \pi]$

Fall 2001 \# 5. For f in $L^{2}[(0,1])$, define $K f$ by

$$
(K f)(x)=\int_{0}^{1}(1-3 x t) f(t) d t
$$

a. Find any nonzero eigenvalues and the associated eigenfunctions for the integral operator K.
b. Find a function $R(x, t ; \lambda)$ such that solutions f to the integral equation

$$
f(x)=g(x)+\lambda \int_{0}^{1}(1-3 x t) f(t) d t
$$

for known function g are given by

$$
\begin{equation*}
f(x)=g(x)+\lambda \int_{0}^{1} R(x, t ; \lambda) g(t) d t \tag{*}
\end{equation*}
$$

c. Solve the equation $\left(^{*}\right)$ when $\lambda=1$ and $g(x)=1$ for all x.

Fall 2001 \# 6. Let \mathcal{P}^{1} be the space of all polynomials of degree no more than 1 with the inner product $\langle f, g\rangle=\int_{0}^{2} f(t) \overline{g(t)} d t$
a. Find a basis for \mathcal{P}^{1} which is orthonormal with respect to that inner product
b Find constants a and b which make the quantity $J=\int_{0}^{2}\left|t^{2}-a-b t\right|^{2} d t$ as small as possible.

Fall 2001 \# 7. For each continuous function f on the interval $[01,1]$ define a function $T f$ by

$$
(T f)(x)=x-\lambda \int_{0}^{x}(x-t) f(t) d t
$$

a. Find a range of values for the parameter λ for which the transformation T is a contraction with respect to the supremum norm. Justify your answer.
b. Find a range of values for the parameter λ for which the transformation T is a contraction with respect to the L^{2} norm. Justify your answer.
c. Describe the iterative process for solving the integral equation

$$
f(x)=x-\lambda \int_{0}^{x}(x-t) f(t) d t
$$

specifying the transformation to be iterated and explaining how this leads to a solution. With $f_{0}(x)=0$ for all x as the starting function, compute the first three iterates, $f_{1}(x)$, $f_{2}(x)$, and $f_{3}(x)$.

End of Exam

