California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Linear Analysis (old version) Spring 2021 Gutarts, Hajaiej, Zhong*

Do at least five of the following seven problems. All problems count equally. If you attempt more than five, the best five will be used.

- (1) Write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only.
- (3) Begin each problem on a new page.
- (4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Fall 2020 #1. We define a transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ by

$$Tx = Cx + b$$
,

where $C = (c_{ij})$ is a real $n \times n$ matrix and $b \in \mathbb{R}^n$ is given.

- (a) If we equip \mathbb{R}^n with the metric $d(x,y) = \max_{1 \leq i \leq n} |x_i y_i|$, under what general condition on the matrix C will T be a proper contraction? Justify your answer.
- (b) Repeat Part (a) with the metric $d(x,y) = \left(\sum_{i=1}^{n} |x_i y_i|^2\right)^{1/2}$.
- (c) With either of the metric from (a) or (b), describe an iteration process for solving the linear system of equations

$$x = Cx + b$$

by specifying the transformation to be iterated and explaining how this leads to a solution.

Fall 2020 #2. Let $p_0(x) = 1$ and $p_1(x) = x$, and let \mathcal{P}_1 be the subspace of the space C([0,2]) of all continuous functions on [0,2] spanned by p_0 and p_1 .

- (a) Find a basis for \mathcal{P}_1 which is orthonormal with respect to the inner product $\langle f, g \rangle = \int_0^2 f(t) \overline{g(t)} dt$.
- (b) Use the results of Part (a) to find the function f(x) = ax + b in \mathcal{P}_1 which makes the quantity

$$J(f) = \int_0^2 |x^2 - f(x)|^2 dx$$

as small as possible.

Fall 2020 #3. If d is a metric on a vector space $X \neq \{0\}$ which is obtained from a norm $\|\cdot\|$, and \tilde{d} is defined by

$$\tilde{d}(x,x) = 0,$$
 $\tilde{d}(x,y) = d(x,y) + 1$ $(x \neq y).$

- (a) Show that \tilde{d} is a metric on X.
- (b) Show that \tilde{d} cannot be obtained from a norm.

Fall 2020 #4. Let $C^2(\mathbb{R})$ be the set of all functions $f: \mathbb{R} \to \mathbb{R}$ such that the second derivative, f'', exists and is continuous. For f in $C^2(\mathbb{R})$, let (Lf)(t) = f''(t) - 2f(t).

- (a) Show that $C^2(\mathbb{R})$ is a vector subspace of $C(\mathbb{R})$, the space of all continuous real valued functions on \mathbb{R} .
- (b) Show that L is a linear transformation from $C^2(\mathbb{R})$ into $C(\mathbb{R})$.
- (c) Let $\mathcal{W} = \{ f \in C^2(\mathbb{R}) \mid f''(t) 2f(t) = 0 \text{ for all } t \in \mathbb{R} \}$. Show that \mathcal{W} is a vector subspace of $C^2(\mathbb{R})$.
- (d) Suppose we change the criterion in Part (c) to $f''(t) 2f(t) = \sin(t)$. Now is W a vector subspace? Why or why not?

Fall 2020 #5. Let $f(t) = t^2$ for $t \in [-\pi, \pi]$, and extend it to be 2π -periodic on \mathbb{R} .

- (a) Find the Fourier series for f(t) in the trigonometric form.
- (b) Use the result of Part (a) to show that

$$1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}.$$

Fall 2020 #6. Let $E = \{f : [-\pi, \pi] \to \mathbb{R} \mid \int_{-\pi}^{\pi} f^2(x) dx < \infty\}$. The inner product on E is defined by

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$$

We define an operator \mathcal{A} on E by

$$(\mathcal{A}f)(x) = \int_{-\pi}^{\pi} k(x, y) f(y) \, dy$$

with $k(x, y) = \sin(x + y)$.

- (a) Prove that \mathcal{A} is continuous from E to $C([-\pi, \pi])$, the space of continuous functions, equipped with the sup norm.
- (b) Is \mathcal{A} self-adjoint from E to $C([-\pi, \pi])$? Justify your answer.
- (c) Is \mathcal{A} compact from E to $C([-\pi,\pi])$? Justify your answer.

Fall 2020 #7. Let T_r and T_l be two operators such that for any $x \in \ell^2(\mathbb{C})$,

$$T_r(x) = (0, x_1, x_2, \dots, x_n, \dots), \quad T_l(x) = (x_2, x_3, \dots, x_n, \dots),$$

where $\ell^2(\mathbb{C}) = \{x = (x_n)_{n \in \mathbb{N}} \mid \sum_{n=1}^{\infty} |x_n|^2 < \infty \}.$

- (a) Show that T_r and T_l are two linear bounded operators on $\ell^2(\mathbb{C})$.
- (b) Find the operator norms $||T_r||$ and $||T_l||$.
- (c) Find $T_r \circ T_l$ and $T_l \circ T_r$.
- (d) Find the adjoint operator of T_l .