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Abstract: The United States (U.S.) Clean Water Act triggered over $1 trillion in investments in
water pollution abatement. However, treated sewage discharge and untreated runoff water that are
contaminated by fecal matter are discharged into California beach waters daily. Warnings are posted
to thwart the public from contacting polluted coastal water, according to the California Code of
Regulations (CCR). This paper evaluated the current policy by empirically examining the productivity
loss, in the form of sick leave, which is caused by fecal-contaminated water along the California
coast under the CCR. The findings of this study showed that Californians suffer productivity losses
in the amount of 3.56 million sick leave days per year due to recreational beach water pollution.
This paper also empirically examined the pollution-to-sickness graph that Cabelli’s classic study
theoretically proposed. The results of the research assure that the existing water quality thresholds
are still reasonably safe and appropriate, despite the thresholds being based on studies from the
1950s. The weakness of the CCR lies in its poor enforcement or compliance. Better compliance, in
terms of posting pollution advisories and increasing public awareness regarding beach pollution
effects on health, would lead to a significant decrease in sick leaves and a corresponding increase
in productivity. Therefore, this study advocates for stronger enforcement by displaying pollution
advisories and better public awareness of beach pollution effects on health.
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1. Introduction

California beaches attract 23 million residents and 150 million tourists each year [1,2]. However,
large volumes of treated sewage discharge and polluted runoff water flow into the California coastline
through storm drains, which are adjacent to many frequently visited California beaches. As the runoff

water travels across the land surface and flows through watersheds down to the coast, the runoff

water accumulates fecal contamination along the way, which originates from various sources, such
as animal waste and leaky sewage pipes [3]. Treated sewage discharge also has a significant amount
of pathogens, despite its treatment [4]. As a result, substantial amounts of human and animal fecal
matter is frequently released into the marine coastal waters. Such urban runoff pollution has a strong
negative impact on the water quality of California’s coastal water, estuaries, and bays [5,6].

Epidemiological studies have suggested that exposure to recreational waters that are polluted by
animal and human waste may result in illnesses, which include respiratory diseases, gastrointestinal
illnesses (GI), and skin, eye, and ear infections [7–13]. For instance, Fleisher et al. [7] surveyed 1216 UK
participants consisting of swimmers and non-swimmers during the summers of 1989–1992. Their
study found an association between swimming in contaminated marine waters and gastroenteritis,
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respiratory disease, and eye and ear infections. Wade et al. [8] examined three beaches in Mississippi,
Alabama, and Rhode Island close to treated sewage discharges and discovered that high levels of fecal
matter can lead to 5% swimmers suffering from GI track symptoms. Swimming, bathing, or any water
activities done in feces polluted water may lead to significant health hazards, reduced productivity,
and economic loss [14–16]. One study by Given et al. [14] estimated that 627,800–1,497,200 excess
gastrointestinal illnesses occurred each year due to swimming in polluted coastal water in Los Angeles
and Orange counties, which caused an economic loss of $21–$51 million dollars. Another study by
DeFlorio-Baker et al. [15] estimated 90 million recreational waterborne illnesses in the United States
and an economic burden of $2.2 to $3.7 billion annually, which included the costs related to lost
productivity, doctor visits, medication expenses, and so on.

In addition, several papers examined the health effects of visiting polluted California
beaches [17–19]. For example, Turbow et al. and Dwight et al. both studied two beaches in
Orange County that have more than 5.5 million visits each year. Their study estimated that nearly
37,000 GI episodes and 38,000 other illnesses per year resulted from the fecal contamination of these
two beaches’ waters, which resulted in losses of $3.3 million dollars [18,19]. Brinks et al. [17] estimated
689,000 to 4,003,000 GI episodes and 693,000 respiratory episodes occur due to polluted coastal waters
each year in Southern California. However, none of these studies collected empirical data to examine
the pollution-to-sickness relationship. Instead, these studies simulated the disease numbers while
using the pollution-to-disease statistics that were generated in [20] or [21].

Swimming beaches are required to be monitored for fecal bacteria to protect the swimmers from
contacting feces contaminated water, according to the California State Legislation Assembly Bill 411
(AB 411) [22]. The California Code of Regulations (CCR) for Ocean Beaches and Ocean Water-Contact
Sports Area pursuant to AB 411 provide the minimum protective thresholds for total coliform, fecal
coliform, and enterococci (ENT) bacteria [23]. The CCR states that the magnitude of ENT in a single
sample, which is also known as the Statistical Threshold Value (STV), from each sampling location
should not exceed 104 cfu/100 mL [18]. Additionally, the Geometric Mean (GM) of ENT during any
monthly sampling period should not be greater than 35 cfu/100 mL [23]. Here, the ENT GM criterion
of 35 cfu/100 mL corresponds to the mean illness rate of 36 NEEAR-GI (NGI) per 1000 primary contact
recreators [24]. Swimming advisories for the public beaches are issued by the county health care
agencies when either of the water quality regulations is violated. The effectiveness of this policy and
the thresholds are constantly called into question [17,20,25]. The United States (U.S.) Environmental
Protection Agency (USEPA) referred to the study upon which the standards were based as “far from
definitive” [25]. Moreover, the initial density was arbitrarily cut in half to 200 fecal coliforms per
100 mL in the 1960s and was converted coliform into ENT standards in 1986 without further research
on ENT [25]. Therefore, it is crucial to empirically examine whether the policy effectively protects the
health of beach visitors.

In contrast to the previous literature, this study aims to empirically examine the fecal
pollution-to-sickness relationship in coastal California under the current regulations. Sickness is
considered to be a type of negative health shock and it may cause productivity loss among workers.
This productivity loss is measured by the number of leaves reported by participants of the Current
Population Survey (CPS). This study exploited arguably exogenous variations in coastal water quality
and the policy thresholds, and estimated the increase in the sick leaves among the local working
population that resulted from beach water fecal contamination under the current policy. In addition,
this study provided the first empirical version of the theoretical pollution-to-sickness curve in Cabelli’s
benchmark study [20]. This information may assist in the determination of future beach water
quality standards.
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2. Materials and Methods

2.1. Materials

2.1.1. CEDEN Water Pollution Data

The ENT data that were used in this study were obtained from the California Environmental Data
Exchange Network (CEDEN). The State Water Resources Control Board manages the CEDEN to record
the surface water quality test results [26,27]. This data portal contains the same water testing results
that are used to determine the posting of the health advisories by the county health care agencies. The
CEDEN documents the time-stamped surface water testing results at the chosen sampling locations
near the beaches. These sampling locations were strategically chosen to represent the water quality of
the coastline. Such sampling locations must be within the Core-Based Statistical Area (CBSA) and
have valid ENT observations during the study period from 2004 to 2013. These points were collected
from the CEDEN data portal. Figure 1 shows the spatial distribution of the sampling locations along
the coast, where the ENT data were collected for this study. Some of the coastal areas do not have
the sampling points, as seen in Figure 1. This could be due to the fact that (1) ENT observations were
not sampled throughout the study time, (2) ENT observations were missing or not valid during this
period, or (3) ENT observations were not within the studied CBSAs.

Table 1 summarizes the data that were used for analysis. The fraction of polluted beachlines that
lie within a Core-Based Statistical Area (CBSA) represent the probabilities of exposure. The fraction
of Polluted beachline is defined as the fraction of sampling locations in the CBSA that exceeds the
indicated pollution threshold, i.e., out of the 10 sampling locations in this CBSA, three of them are
deemed polluted, and then the fraction of polluted beachline is 0.3 or 30%. Under the GM (STV)
threshold, the probability of someone being exposed to polluted coastal water is 12% (7%). This is
consistent with the estimates in the literature of [17]. Figure 2 depicts the probability that a certain
faction of local beachline is polluted and it shows the probability distribution of the fraction of polluted
local beachlines using both the STV and GM measures.
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Figure 1. Map of Sampling Locations in California. The blue dots indicate the sampling locations
obtained from California Environmental Data Exchange Network (CEDEN). The Core-Based Statistical
Area (CBSA) boundaries are from the US Census in 2010.
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Table 1. Summary Statistics. (Please add the column heading.)

Variable Observations 1 Mean Standard Deviation Min Max

CPS Individual Survey

Year 522,080 2008.70 2.81 2004 2013
Month 522,080 6.67 3.40 1 12
Age 522,080 39.91 13.21 18 65
White 522,080 0.75 0.44 0.00 1.00
Black 522,080 0.07 0.25 0.00 1.00
Hispanic 522,080 0.36 0.48 0.00 1.00
Gender 522,080 0.50 0.50 0.00 1.00
Sick Leave 522,080 0.02 0.13 0.00 1.00
CDC WONDER
Weather Dataset
Rainfall 2

409,923 1.11 1.78 0.00 17.49

Polluted Beachline by CBSA and Month 3

Determined by GM Criteria:
>35 cfu/100 mL 1202 0.12 0.18 0 1
>50 cfu/100 mL 1202 0.08 0.15 0 1
35–50 cfu/100 mL 1202 0.04 0.09 0 1

Determined by STV Criteria:

>104 cfu/100 mL 1202 0.07 0.12 0 1
1 The Current Population Survey (CPS) data were on the individual level. The survey answers from
522,080 individuals were used in this study. The data on rainfall were unavailable in 2012–2013, which led
to a smaller number of individuals in these years, or a total of 409,923. The pollutant dataset was organized based on
CBSA at a monthly scale. There were 1202 CBSA-by-month pollution measures utilized in this study. 2 Rainfall by
month and county were measured in mm and obtained from CDC Wonder Weather Dataset. 3 Polluted beachline is
defined as the fraction of sampling locations in the CBSA that exceeds the indicated pollution threshold.
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Figure 2. Probability of Fecal Matter Contamination at California Coasts. This figure depicts the
probability distribution of the polluted beachline variable, which ranged from 0 to 1 (or 0% to 100%).
The enterococci (ENT) pollution levels were from CEDEN 2004–2013. Fecal-contaminated was defined
as the monthly ENT index higher than 35 cfu/100 mL in (a), and daily ENT index higher than 104 cfu/100
mL in (b).

2.1.2. Current Population Survey (CPS)

The 2004–2013 waves of CPS were used to measure the amount of sick leave. This study observed
individuals between 18 and 65 years of age who have a valid report of their race, ethnicity, gender,
employment status, and sick leave. Sick leave is a YES or NO to the question, in which participants
were asked “Have you ever taken a sick day from a labor market activity during the week before



Int. J. Environ. Res. Public Health 2019, 16, 1987 5 of 12

the CPS interview?”, where a labor market activity is a combination of working full-time, working
part-time, and job search.

This study linked the pollution indicators that were derived from the CEDEN to individuals in
the CPS using the month, the year, and the longitude and latitude of the sampling locations. The data
were kept for people who live in the California CBSAs that have a beach within their borders with at
least one sampling location that consistently gathered ENT density data. These individuals live in
the following cities: Los Angeles, Long Beach, Santa Ana, Salinas, San Diego, Carlsbad, San Marcos,
San Francisco, Oakland, Fremont, San Luis Obispo, Paso Robles, Santa Barbara, Santa Maria, Goleta,
Santa Cruz, Watsonville, Santa Rosa, Petaluma, Oxnard, Thousand Oaks, and Ventura. This process
left us with 501,110 individuals.

2.2. Methods

This section introduced the empirical strategies, where the study took advantage of the arguably
exogenous variation in the degree of pollution of the coastal residents’ local beach waters. The empirical
model in this study is more sophisticated than the models that were adopted in related studies. As
stated in the introduction, several papers examined the health effects of visiting polluted California
beaches [17–19]. However, these studies did not estimate the pollution-to-sickness statistics, instead,
these studies adopted the numbers that were generated in [20] or [21]. In comparison to Cabelli [20]
and Kay et al. [21], the method used in this study is similar to theirs in many respects. First, following
their methods, this model includes demographic and social economic controls that take the background
rate of disease into account; second, this model reduces the bias that is introduced by day-to-day
variations of pollutant density by using a monthly measure. However, this study takes one step further
and it looks at a crucial outcome of the illness, which is sick leave from work. In addition, this study
looks at the intent-to-treat (ITT) effect, rather than the treatment-on-the-treated (TOT) effect. The ITT
effect includes all individuals of interest, regardless of the treatment that these individuals actually
received. While, TOT is the effect of taking the experiment. Applying this concept to this case, the
ITT effect would be the effect of water being polluted on everyone who might be going to the beach.
These people could have seen the warnings and left or could have stayed, because these people were
unaware of the pollution or simply did not care. The TOT effect would be the effect of exposure to
polluted water versus not exposed. Typically, for evaluating the effect of a policy, the ITT estimator is
more useful, because this estimator is more relatable to the real-life effect of the policy.

Concerns for endogeneity after controlling for the independent variables in this model are low for
the following reasons. First, the identification strategy that is used in this model not only relies on
the fecal matter density, but also on the pollution criteria that are set by the government. Individual
behavior must be somehow guided by the degree of pollution on local beachline for an omitted variable
bias to occur. This is very unlikely, as individuals cannot predict the water quality with sufficient
accuracy for a number of reasons. Fecal pollution in coastal waters is barely noticeable or observable
with the naked eye. This type of pollution varies drastically day to day and responds primarily to
the upstream pollution conditions tens of miles away from the coast. Fecal pollution is also largely
influenced by events that are unrelated to health, such as an upstream city’s garden irrigation schedule
or a sewage treatment plant’s release schedule. Official reports of water quality are usually days, if not
weeks, behind the calendar day. Hence, individuals cannot predict the water quality with a sufficient
degree of accuracy.

Equation (1) shows the reduced-form relationship between pollution and the number of forgone
work or job-search days. Below is the empirical model that was adopted. Equation (1) was estimated
while using the STATA® software.

Sick Leaveigt = θPollutedgt + Xigtγ+ δt + δg + δg × t + εigt (1)

Productivity loss is measured with Sick Leave, which a dummy indicator of taking sick leave in
the previous week for an individual (i) in CBSA (g) and survey month (t). Polluted is the fraction of
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beachline that violated CCR policy in the residents’ CBSA in the month of the survey. The primary
definition of Polluted is determined by the monthly GM threshold of 35 cfu/100 mL that the California
regulations recommend. First, the geometric mean of each month’s ENT levels was calculated using the
daily ENT according to the policy recommendations. Subsequently, this monthly GM was evaluated
against the California regulations’ monthly GM criteria of 35 cfu/100 mL to determine whether the
sampling location was contaminated for that month. The average probability of contamination across
sampling locations was calculated to represent the degree of pollution in local coastal water if multiple
sampling locations were in the same CBSA. The monthly average probability of violating the STV of
104 cfu/100 mL is treated as a secondary measure and used in the robustness tests.

The covariates in X include the demographic variables for individual i, which include race (black,
white, and other), ethnicity (Hispanic and non-Hispanic), and gender fixed effects. X also includes the
employment status, which is a determinant of health [28]. γ is a vector of coefficients that corresponds
to each X. δt, δg, and δg ∗ t are the year fixed effect, the CBSA fixed effect, and the CBSA-specific linear
time trend, respectively. The CBSA fixed-effects capture the geographic differences in the economic
environment, population density, the quality of beach water, and the average beach-going behavior
among local residents. The CBSA fixed-effects also capture the differences in the operation efficiency
across the different local health care agencies that are responsible for educating the local population in
beach water safety and posting warning signs on the beach when the ENT level exceeds the threshold.
The year fixed effects account for the sporadic events each year that cause changes in the disease
occurrences and the yearly variation in beach water quality, such as that caused by population growth.
The CBSA-specific time trends capture the changes over time, such as gradual decays of each CBSA’s
amenities that regulate fecal matter exposure, or the increase in the effort to educate the residents
of water quality by CBSA, etc. The parameter θ, after controlling for these fixed effects, is arguably
unbiased. ε is the random error. The 2004–2011 monthly rainfall (measured in mm) was retrieved from
the CDC Wonder, which was used in the robustness checks.

This study considers θ as the lower-bound estimate of productivity losses due to fecal matter,
because it is possible that some individuals would attend work, even when these individuals do not
feel well, while others may have jobs with flexible hours that do not require taking sick leave. θ also
does not distinguish among the channels through which fecal matter affects health. According to the
F-diagram of [29], the pathways of fecal pathogens are transmitted to a new host, either directly or
indirectly, through digestion, fluids, physical contact, flies, or field crops. In California, besides the
direct contact that was evaluated, the only other likely channel is through flies and/or food. Contact
with contaminated runoff water upstream was difficult, since most watershed drains were not accessible
during the study period. Therefore, this study shows that the predominant reason for expose to coastal
fecal contaminants would be direct physical contact with the coastal water.

3. Results

3.1. Average Productivity Loss when Pollution Exceeds the Threshold

Table 2 panel A reports the results while using the monthly GM criteria of >35 cfu/mL as the
measure for pollution. The first column presents the simple bivariate relationship between beach
pollution and sick leave. This regression only uses the observations from the months during which
there was local beach pollution that was determined by the monthly GM threshold. Columns (ii) to
(iv) of Table 2 panel A gradually add the control variables and fixed effects until the model reaches
the preferred specification stated in Equation (1). The coefficient that was reported in Column
(iv) indicates that, if 100% of the local beachline has a pollution level above the monthly GM threshold
of 35 cfu/100 mL, sick leave rises by 0.9 percentage points. To put this number into perspective, if the
CPS sample is representative of the entire Californian population, then the effect can be translated into
3.56 million sick leave days per year due to polluted recreational water exposure among all Californians.
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Table 2. The Effect of Exposure to Fecal-contaminated Coastal Water on Taking Sick Leave Using
Alternative Specification and Control for Rain Fall.

Independent Variable (i) (ii) (iii) (iv) (v) (vi)

Panel A: GM threshold
% Beachline Polluted 0.005 *** 0.009 *** 0.009 *** 0.009 *** 0.009 *** 0.006 **

(0.001) (0.001) (0.001) (0.001) (0.002) (0.003)
R2 0.001 0.001 0.001 0.006 0.005 0.005

Panel B: STV threshold
% Beachline Polluted 0.009 *** 0.020 *** 0.018 *** 0.018 *** 0.018 *** 0.014 ***

(0.002) (0.003) (0.003) (0.003) (0.003) (0.005)
R2 0.001 0.001 0.001 0.006 0.005 0.005

Year FE Y Y Y Y Y
CBSA FE Y Y Y Y Y

CBSA-specific Time Trend Y Y Y Y
Demographics Y Y Y

Rainfall Y Y
Years of Data Included 2004–2013 2004–2013 2004–2013 2004–2013 2004–2011 2004–2011

Columns (i) to (iii) gradually adds control variables to show consistency of our analysis. The control variables in
column (iv) is the same as specified in Equation (1). The included control variables for each column are indicated
on the bottom panel of the table. Y indicates that the corresponding control variable is included. White-robust
standard errors are used and reported in the parentheses. ** significant at 5 percent; *** significant at 1 percent.

3.2. Robustness Tests

The results in panel A were replicated using an alternative STV measure in panel B of Table 2.
Exceeding the STV threshold signals a very high ENT level of at least 104 cfu/100 mL. The STV measure
is less reliable than the GM measure, because the STV measure is subject to a larger measurement error
due to the sampling locations and/or the time of the day. Nevertheless, there is a similar but more
severe health effect (1.8 percentage points) from exceeding the STV pollution threshold. However, the
standard errors are also much larger due to the variation in the daily ENT measurements.

Panel A of Table 2 columns (v) and (vi) perform the robustness test, which considers the additional
effects of rain on both measures of beach water quality. Rainfall increases the chance of sickness and it
also increases the chance of the previously accumulated pollutants in the watershed to being washed
to the shore [30]. Therefore, to prevent this omitted variable bias, the study controls for rainfall in this
robustness test. These columns are based on individuals surveyed from 2004 to 2011 due to the limited
years of rainfall data. Consequently, column (v) replicates the same exercise in column (iv) using
2004–2011 samples and serves as a point of comparison for adding the rainfall as a control variable in
the analysis. The size of the effect in column (v) remained identical to column (iv), even with fewer
observation years. Column (vi) adds the rainfall control variable. Controlling for rainfall did reduce
the coefficient from 0.9 to 0.6 percentage points, although the change is statistically insignificant. This
is consistent with our hypothesis that controlling for rainfall reduces upward omitted variable bias
and helps to more accurately identify the effect of water quality. The 0.6 percentage point estimate
was adopted as the primary and conservative estimate of the productivity loss due to runoff water
pollution. A similar test was performed for the STV regressions in the Panel B columns (v) and (vi).

3.3. Effectiveness of the Water Quality Criteria

This section explores the effectiveness of the criteria from two aspects: whether people comply
with warning signs and whether the monthly/daily thresholds are sufficiently low to be at safe levels.
Figure 3 shows the effect of changing the GM criteria on productivity loss. Figure 3a graphically
illustrates the size of the effect according to the pollution level. Gradually increasing the monthly GM
in Equation (1) from 10 to 110 in 10 cfu/mL intervals produces these estimates. This figure aims to
inform the choice of a proper GM criterium for beach pollution. Each point is a separate regression
that evaluates the increase of sick leave if the local beachline shifted from no pollution to polluted
with fecal matter density near the said GM level (criterium-10 to criterium to be precise). For example,
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the value that was plotted for GM of 20 cfu/mL is the estimated effect on sick leave had the beach
pollution level been at 10–20 cfu/mL. Equation (1) is used to estimate these effects. Figure 3b shows the
equivalent theoretical deduction of the water pollution-sickness relationship and the ideal theoretical
threshold proposed in the benchmark-setting work of Cabelli [20]. This paper is the first to show the
empirical curve of Cabelli’s theoretical deduction.
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proper STV criterium for beach pollution. Each point is a separate regression that evaluates the 
increase of sick leave if the local beachline went from no pollution to polluted with fecal matter 
density near the said STV level (criterium-5 to criterium to be precise). For example, the value that is 
plotted for STV of 50 cfu/mL is the estimated effect on sick leave if the beach pollution level been at 
45–50 cfu/mL. Equation (1) is used to estimate these effects. No obvious trend break is noticeable 
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Figure 3. Effect of Exposure to Fecal-contaminated Coastal Water by Different Monthly Pollution
Level. (a) The impact of having different pollution levels. The vertical line corresponds to the current
CA monthly pollution criterium, which is GM level higher than 35 cfu/100 mL. (b) The ideal criteria
suggested by Cabelli [20] based on a theoretical discussion of cost-benefit analysis.

Surprisingly, comparing the two figures shows that the pollution thresholds were set at a
close-to-ideal level, and these thresholds should be reasonably safe. The theoretical prediction of the
pollution-illness curve matches well with the shape of the empirical curve shown in Figure 3a. The
ideal policy threshold should be strategically placed before the exponential growth segment of the
curve for mild illnesses, which is almost precisely where 35 cfu/mL is on Figure 3a.

The lack of compliance with the policy is also what is surprising. Perfect compliance to the policy
would imply that, whenever pollution exceeds the monthly GM threshold, a warning sign is posted,
and everyone would follow the sign. The coefficient to the right of the threshold should be zero,
because no one would have been exposed to polluted water. One would expect Figure 3a to display a
sharp drop in the size of the coefficient immediately to the left of the threshold, even with imperfect
compliance. However, there is not any observable discontinuity at the threshold.

To further test whether compliance is improved with the high STV threshold, a similar exercise
was performed using the various levels of STV in Figure 4. This figure aims to inform the choice of
a proper STV criterium for beach pollution. Each point is a separate regression that evaluates the
increase of sick leave if the local beachline went from no pollution to polluted with fecal matter density
near the said STV level (criterium-5 to criterium to be precise). For example, the value that is plotted for
STV of 50 cfu/mL is the estimated effect on sick leave if the beach pollution level been at 45–50 cfu/mL.
Equation (1) is used to estimate these effects. No obvious trend break is noticeable near the 104 cfu/100
mL thresholds either.
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4. Discussion

This study estimated the 3.56 million sick leave days per year due to polluted recreational water
exposure among all Californians. This number is generally consistent with the GI infection predictions
for Orange County’s Newport and Huntington Beaches based on historical pollution-to-sickness
estimates [12]. The two beaches were predicted to generate an average of 36,778 GI episodes per year
and approximately 38,000 more other illness episodes per year, which included respiratory, eye, and ear
infections [19]. It is important to note that beach-pollution induced illness is not the most prominent
reason for sick leave. Therefore, this study explains approximately 0.6 percent of all sick leave per year
according to the r-squared statistics of the preferred specification. Albeit small, this fraction of sick
leave is the result of beach water pollution. Additionally, the small fraction equates to a large number
of sick leave in total, which should not be taken lightly by policymakers.

Based on this study, the importance of the AB 411 to public health should not be underestimated,
but it is important to note that these GM and STV criteria came into being rather haphazardly, for
the purpose of fully understanding this policy. These criteria were converted from the coliform
thresholds that were released by National Technical Advisory Committee in 1968 [24]. These coliform
thresholds were obtained from a study by the U.S. Public Health Service, which found the threshold of
sickness-inducing coliform density to be 400 fecal coliforms per 100 mL [31]. These results are referred
to by the USEPA as “far from definitive”, and the agency arbitrarily cut this density in half to 200 fecal
coliforms per 100 mL in the 1960s [25]. Cabelli [20] and Dufour [32] later found that ENT density
is a better predictor of GI illnesses when compared to coliform. In 1986, an unproven formula was
implemented by the USEPA [25] to convert coliform into ENT standards. It is easy to see that various
steps of the generation of the ENT criteria are debatable and the thresholds are not based on empirical
research regarding ENT. Therefore, the policy calls for further tests on its effectiveness.

The effectiveness of the water quality criteria was assessed by two tests in this study. The first test
is to determine the safeness of the monthly/daily water quality thresholds. These tests are important
for a number of reasons. First, the only enforcement method is posting warning signs or closure signs.
It would be beneficial for policymakers to test whether this is sufficient for preventing exposure to
contaminated coastal water. Second, the California regulations have set the monthly GM pollution
threshold for warning the public at 35 cfu/100 mL of ENT. This ENT standard is an arbitrary conversion
of a debatable threshold measured using the fecal coliform density. Therefore, it is useful to see whether
an empirical test that is based on ENT renders the ideal disease-prevention effect as is theoretically
deduced. Surprisingly, the results indicate that the somewhat outdated pollution thresholds are
reasonably safe and appropriate. The empirical pollution-to-sickness curve matches well with the
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theory that was proposed by Cabelli [20]. The theoretically optimal threshold should be the start of the
segment of accelerated growth in the pollution-to-sickness curve. Both the GM and STV thresholds
precede the accelerated growth segment of their corresponding curves based on the shape of the
empirical curve estimated in this study.

The second test focused on whether the recreators comply with the warning signs. As previous
discussions suggested, our study should expect a significant decrease in the size of the effect when the
thresholds were exceeded if compliance to the policy is high. Figures 3 and 4 showed no noticeable
trend breaks near the GM or STV thresholds. The lack of such trend breaks indicates inadequate
compliance to the existing policy being noticed using both monthly and daily water quality thresholds.
If the current policy was strictly enforced, there would be a significant reduction in sick leaves and a
corresponding gain in productivity. This finding implies that the warning signs were quite ineffective
in preventing exposure to contaminated coastal water, and more effective measures are necessary.

The lack of enforcement of the policy is an alternative explanation for the lack of compliance.
Brinks et al. [17] mentioned that the number of times a warning or a closure sign is posted on the
beaches is much lower than the 12% estimated with the data. Meanwhile, it is worth noting that the
enforcement of policies is often a clouded area with a lot of stakeholders weighing in to achieve the
best balance that benefits the stakeholders in a fair manner. Preventing visitors from going certainly
faces backlash from the beach-loving communities and beach cities, whose economy heavily depends
on beach visitors. In fact, some beach lovers are willing to take the risk of going to “polluted” beach,
despite the high-bacteria level warning. Therefore, the reality is that a beach is often closed when there
is a sewage overflow or spill upstream from the beach, which is a real more serious risk, but it is not
based on the ENT level of its water.

5. Conclusions

This study assesses the existing California Code of Regulations that controls the beach water
quality monitoring for fecal contamination and determines the productivity losses due to exposure to
beach fecal contamination. The hypothesis is that successful regulation would lead to no productivity
losses. The study found a 0.6 percentage point increase in sick leave when the GM criterium is exceeded,
which translates into 3.56 million sick leave days per year in coastal California. Furthermore, the
regression model that was used is robust to alternative specifications. The results reveal that the beach
water quality criteria are set at reasonably safe levels. However, the enforcement of the regulations
needs to be strengthened to prevent visitors from going to polluted beaches. Public awareness of beach
pollution effects on health should also be increased to prevent illness.
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