Lesson Plan

Lesson: INTRODUCTION TO MATLAB

Timeframe: 75 Mins

Materials needed:

Laptop/Lab computers, LCD projector, handout of PowerPoint slides, handout of in-class matlab experiments, MATLAB software installed on all computers/laptops

Objectives:

Basic:

- 1. Understand the usefulness of Matlab
- 2. Learn main components of maTlab
- 3. Get familiar with workspace, m-files, variables, etc.
- 4. Learn to write and compile a simple code

Advanced:

- 1. Get a high-level overview of Matlab
- 2. Build an appreciation towards the usefulness of the software
- 3. Develop an intuition of when this tool might be useful for problem solving

Background:

This is a required 1-unit course needed to introduce the basic knowledge of programming and use of MATLAB, which is a computational tool in widespread use across all Engineering disciplines. MATLAB is de-facto a modern version of a calculator for an Engineer. This introductory 75 min long session is planned to *introduce* the students to the world of MATLAB. It is intended to highlight the importance of MATLAB in current Engineering work and related research. After the introduction and motivation, students will gradually be exposed to the know-how of the tool. They will learn to open the tool, understand a few basic features of GUI, run a sample code, and evaluate the results.

Introduction to Lesson:

The classroom session begins with an interactive session where instructor asks the students what they know about MATLAB. The idea of this activity is to engage the students and introduce MATLAB formally in class, giving each student an opportunity to speak about the activities performed in individual space and at the end summarizing from instructor's point of view.

After that, instructor explains what we are going to do in the next 50 minutes. Instructor will make clear that after this session they will be able to open the MATLAB software, will be able to write and run a simple software code.

Procedure [Time needed, include additional steps if needed]:

Steps	Purpose	Estimated	Learning
Q ₁ 1		Time	Objective
Step 1:	This video will	15 mins	Students learn
Watch an Introductory video of various	provide the history		various
	and evolution of		available
simulation (calculation tools available for	various tools used		tools.
	for scientific		
cingineers	research. Goal is to		Students
	provide enough		appreciate
	motivation and		the
	highlight the		importance of
	importance of this		this tool in
	tool.		engineering
Step 2:	This video will very	15 mins	Students get
	basic information		familiar to the
	about MATLAB. It		lay out and
watch an introductory video of IVIATLAB	will show how to		various
	open a MATLAB		functionalities
	software, all the		of MATLAB
	features and buttons		
	in the graphical user		Students learn
	interface etc. It will		how to
	also write a very		compile and
	basic sample code,		learn a simple
	save it on computer		code.
	and run it in MATLAB		
Step 3:	These presentation	1 hr	Provide hands
	slides will be a step-		on experience
Converting and an experimentation and only a	by-step guide to		to students.
Go over the provided presentation and solve	provide some hands		This activity
the indulit examples simultaneously	on experience in		will help
	MATLAB. Slides will		students
	present a concept		getting
	and then it will be		familiar to the
	immediately by an		tool and also
	example code.		build
	Students will type in		confidence as
	the code in the		they
	MATLAB code, run it		themselves
	and match the		are making it
	results		work.

Pre-Class Individual Space Activities and Resources:

Steps	Purpose	Estimated Time	Learning Objective
Step 1:	Getting to know	10 mins	Clear
	students and gauge		understanding
Interactive Session	their understanding		of <i>what</i> and
	of MATLAB.		why about
	Summarize and		MATLAB.
	introduce the topic		
	formally.		
Step 2:	Handouts will be	15 mins	Students
	provided to all the		write the
Think pair share	students containing 5		codes
	simple problems.		themselves.
	Students will pair up		
	and work jointly on		Learn deeper
	each one of them,		insights and
	one by one. After		knowledge
	each problem,		through
	instructor will invite		interaction
	volunteers to share		and problem
	their approach and		solving
	then provide an		
~ ~	optimal solution.		
Step 3:	Instructor will begin	35 mins	Students learn
	introducing more		advanced
	features and		features and
	functionalities such		at the same
Deeper into the subject	as, arrays, for loops,		time try
	while loops etc. After		themselves on
	each key concept,		their
	they will be an in-		computer to
	class problem where		build
	students will be given		confidence.
	time to solve		
	individually, and then		
	instructor will discuss		
	it.		

In-Class Group Space Activities and Resources:

Closure/Evaluation: [10 mins]

Analysis:

- Ask students what they enjoyed the most today.
- Ask students what was their favorite *function* of all the ones studied today.
- Ask students to recall all the *functions* and their uses that we studied today. Conclude and summarize all the *functions* for a recap.

Post-Class Individual Space Activities:

- Revision of lecture slides
- A programming assignment with four questions directly using the concepts and functions taught in this class.

Connections to Future Lesson Plan(s): [5 mins]

Conclude the class with details about the topics of the next lecture, and tell the students how the concepts learned today will serve as a foundation for future classes.