HW9 Solutions



















2)  
Let 
$$x \in IR$$
 be fixed.  
Pick N<sub>1</sub>>0 large enough so  
that  $-N_1 \leq f(x) \leq N_1$ .  
Pick N<sub>2</sub>>0 large enough so  
that  $-N_2 \leq x \leq N_2$ .  
Let  $M = \max \{N_1, N_2\}$ .  
Then,  $-M \leq f(x) \leq M$  and  $-M \leq x \leq M$ .  
Thus,  
 $-g_M(x) = -M \cdot X_{EM,M}$   
 $= -M \leq f(x) \leq M$   
 $= M \cdot X_{EM,M}$   
 $(x) = 9_M(x)$   
 $= M \cdot X_{EM,M}$ 

That is,  

$$-g_{M}(x) \leq f(x) \leq g_{M}(x).$$
So,  

$$f_{M}(x) = \operatorname{mid} \{ \{ -g_{M} \}, f_{J} g_{M} \} \{ (x) = f(x).$$
Note that if  $n \geq M$ , then  $[-M,M] \leq [-n,n]$   
and so  $X_{[-M,M]}(x) \leq X_{[-n,n]}(x).$   
Thus, if  $n \geq M$ , then  

$$-g_{n}(x) = -n \cdot X_{[-n,n]}(x) \leq -n \cdot X_{[-M,M]}(x)$$

$$\leq -M \cdot X_{[-n,n]}(x) = -g_{M}(x)$$

$$\leq f(x) \leq g_{M}(x) = M \cdot X_{[-M,M]}(x)$$

$$\leq n \cdot X_{[-M,M]}(x) \leq n \cdot X_{[-M,M]}(x)$$

$$= g_{n}(x).$$

That is, if 
$$n \ge M$$
, then  
 $-g_n(x) \le f(x) \le g_n(x)$ .  
So if  $n \ge M$ , then  
 $f_n(x) = \operatorname{mid} \{2 - g_n, f_n, g_n\}(x)$   
 $= \operatorname{mid} \{2 - g_n(x), f(x), g_n(x)\} = f(x)$ .  
Thus given  $\ge >0$ , if  $n \ge M$ , then  
 $|f_n(x) - f(x)| = |f(x) - f(x)|$   
 $= 0 < \mathbb{E}$ .

Therefore,  $\lim_{n \to \infty} f_n(x) = f(x)$ .

(3) Let  $x \in \mathbb{R}$ . Since  $h(x) = mid \{2 - g(x), f(x), g(x)\}$ We may break the proof into three cases. (are 1: Suppose h(x) = -g(x). Case 1. Suppose ||-g(x)| = g(x). Then, |h(x)| = |-g(x)| = g(x).  $g(x) \ge 0$ Case 2: Suppose h(x) = f(x). Then by the def of mid 2-g(x),f(x),g(x)} We have that  $-g(x) \leq f(x) \leq g(x)$ . Thus,  $-g(x) \leq h(x) \leq g(x)$ .  $S_{o}$   $|h(x)| \leq g(x).$ cuse 3: Suppose h(x) = g(x). Then, |h(x)| = |g(x)| = g(x)g(x) 20 In all three cases,  $|h(x)| \leq g(x)$ . 

 $(4)(\alpha)$ From HW 4 problem 5, min 2 en, 4n ] is a step function for each n≥1 since of and to are step functions. We now show that the sequence min 2 Pn, th 3 is non-decreasing. Let n7,1 be fixed. Let XE IR, Since (Pn)n=1 is non-decreasing we have that  $P_n(x) \leq P_{n+1}(x)$ . Since  $(T_n)_{n=1}^{\infty}$  is non-decreasing we have that  $\Psi_n(x) \leq \Psi_{n+1}(x)$ .



$$\frac{cuse \left[ i \text{ Suppose } \min \left\{ \Psi_{n}(x), \Psi_{n}(x) \right\} = \Psi_{n}(x) }{\text{and } \min \left\{ \Psi_{n+1}(x), \Psi_{n+1}(x) \right\} = \Psi_{n+1}(x).}$$
Then,  
Then,  

$$\min \left\{ \Psi_{n}, \Psi_{n} \right\}(x) = \min \left\{ \Psi_{n}(x), \Psi_{n}(x) \right\} \\= \Psi_{n}(x) \leq \Psi_{n+1}(x) \\= \min \left\{ \Psi_{n+1}(x), \Psi_{n+1}(x) \right\} \\= \min \left\{ \Psi_{n+1}(x), \Psi_{n+1}(x) \right\}$$

$$\frac{\text{case 2'}}{\text{and min } \{ \Psi_n(x), \Psi_n(x) \} = \Psi_n(x)}$$
  
and min  $\{ \Psi_{n+1}(x), \Psi_{n+1}(x) \} = \Psi_{n+1}(x)$ .  
Since min  $\{ \Psi_n(x), \Psi_n(x) \} = \Psi_n(x)$   
we know that  $\Psi_n(x) \leq \Psi_n(x)$ .

Then,  

$$\min \{ \varphi_{n} \} \{ x \} = \min \{ \varphi_{n}(x), \Psi_{n}(x) \}$$

$$= \varphi_{n}(x) \leq \Psi_{n}(x) \leq \Psi_{n+1}(x)$$

$$= \min \{ \varphi_{n+1}(x), \Psi_{n+1}(x) \}$$

$$= \min \{ \varphi_{n+1}, \Psi_{n+1} \} (x)$$

$$\frac{\text{Case 3}:}{\text{(and min } \{P_{n+1}(x), f_{n+1}(x)\}\}} = f_{n}(x)}{\text{(and min } \{P_{n+1}(x), f_{n+1}(x)\}\}} = P_{n+1}(x)}.$$
Since min  $\{P_{n}(x), f_{n}(x)\} = f_{n}(x)}{\text{we know that } f_{n}(x)} = f_{n}(x)}{\text{we know that } f_{n}(x)} \leq P_{n}(x)}$ 
Then,
$$\min \{P_{n}, f_{n}\}(x) = \min \{P_{n}(x), f_{n}(x)\}}{= f_{n}(x)} \leq P_{n+1}(x)}{= \min \{P_{n+1}(x), f_{n+1}(x)\}}$$

$$= \min \{P_{n+1}(x), f_{n+1}(x)\}}{\min \{P_{n}(x), f_{n+1}(x)\}}$$
Case 4: Suppose  $\min \{P_{n}(x), f_{n}(x)\} = f_{n}(x)}{\text{(and min } \{P_{n+1}(x), f_{n+1}(x)\}\}} = f_{n+1}(x)}.$ 
Then,
$$\min \{P_{n}, f_{n}\}(x) = \min \{P_{n}(x), f_{n}(x)\}}{= f_{n+1}(x)}.$$

$$\min \{P_{n}, f_{n}\}(x) = \min \{P_{n}(x), f_{n}(x)\}}{= f_{n+1}(x)}.$$

From cases [-4] we get that  $(\min\{\varphi_n, t_n\})_{n=1}^{\infty}$  is a non-decreasing sequence of step functions. (4)(6) From HW 4 problem 5, max 2 en, 4, 3 is a step function for each n≥1 since of and to are step functions. We now show that the sequence max 2 Pn, this non-decreasing. Let n7,1 be fixed. Let XE IR, Since  $(P_n)_{n=1}^{\infty}$  is non-decreasing we have that  $P_n(x) \leq P_{n+1}(x)$ . Since  $(T_n)_{n=1}^{\infty}$  is non-decreasing we have that  $\Psi_n(x) \leq \Psi_{n+1}(x)$ .



$$\frac{\text{cuse } [: \text{ Suppose } \max\{\{\varphi_n(x), \Psi_n(x)\}\} = \varphi_n(x))}{\text{and } \max\{\{\varphi_{n+1}(x), \Psi_{n+1}(x)\}\} = \varphi_{n+1}(x).}$$
Then,  

$$\text{Then,}$$

$$\max\{\{\varphi_n, \Psi_n\}(x) = \max\{\{\varphi_n(x), \Psi_n(x)\}\}$$

$$= \varphi_n(x) \leq \varphi_{n+1}(x)$$

$$= \max\{\{\varphi_{n+1}(x), \Psi_{n+1}(x)\}\}$$

$$= \max\{\{\varphi_{n+1}, \Psi_{n+1}\}(x)\}$$

$$\frac{\text{case 2}:}{\text{and max} \{ \Psi_{n}(x), \Psi_{n}(x) \} = \Psi_{n}(x)}{\text{and max} \{ \Psi_{n+1}(x), \Psi_{n+1}(x) \} = \Psi_{n+1}(x)}.$$
  
Since max  $\{ \Psi_{n+1}(x), \Psi_{n+1}(x) \} = \Psi_{n+1}(x)}{\text{we know that } \Psi_{n+1}(x) \leq \Psi_{n+1}(x)}$ 

Then,  

$$\max \{\varphi_{n}, \psi_{n}\}(x) = \max \{\varphi_{n}(x), \psi_{n}(x)\}$$

$$= \varphi_{n}(x) \leq \varphi_{n+1}(x) \leq t_{n+1}(x)$$

$$= \max \{\varphi_{n+1}(x), \psi_{n+1}(x)\}$$

$$= \max \{\varphi_{n+1}, \psi_{n+1}\}(x)$$

$$\frac{cuse 3}{n} Suppose \max\{\varphi_{n}(x), \psi_{n}(x)\} = \psi_{n}(x)$$
  
and  $\max\{\varphi_{n+1}(x), \psi_{n+1}(x)\} = \varphi_{n+1}(x)$ .  
Since  $\max\{\varphi_{n+1}(x), \psi_{n+1}(x)\} = \varphi_{n+1}(x)$   
we know that  $\psi_{n+1}(x) \leq \varphi_{n+1}(x)$ .  
Then,  
 $\max\{\varphi_{n}, \psi_{n}\}(x) = \max\{\varphi_{n}(x), \psi_{n}(x)\}$   
 $= \psi_{n}(x) \leq \psi_{n+1}(x) \leq \varphi_{n+1}(x)$   
 $= \max\{\varphi_{n+1}(x), \psi_{n+1}(x)\}$   
 $= \max\{\varphi_{n+1}(x), \psi_{n+1}(x)\}$   
 $= \max\{\varphi_{n+1}(x), \psi_{n+1}(x)\}$ 

<u>Cuse 4</u>: Suppose  $\max \{ \varphi_n(x), \Psi_n(x) \} = \Psi_n(x)$ and  $\max \{ \varphi_{n+1}(x), \Psi_{n+1}(x) \} = \Psi_{n+1}(x).$ 

Then,  

$$\max \{ \varphi_{n}, \psi_{n} \}(x) = \max \{ \varphi_{n}(x), \psi_{n}(x) \}$$

$$= \psi_{n}(x) \leq \psi_{n+1}(x)$$

$$= \max \{ \varphi_{n+1}(x), \psi_{n+1}(x) \}$$

$$= \max \{ \varphi_{n+1}, \psi_{n+1} \}(x)$$

From cases [-4] we get that  $(\max\{\varphi_n, t_n\})_{n=1}^{\infty}$  is a non-decreasing sequence of step functions.

(a) Let f: R→ IR and g: R→ R
be in L<sup>0</sup>.
Then there exist non-decreasing requerces
of step functions 
$$(P_n)_{n=1}^{\infty}$$
 and  $(T_n)_{n=1}^{\infty}$ 
such that  $P_n \rightarrow f$  on an almost
everywhere set  $A_1$  and  $T_n \rightarrow g$  on
an almost everywhere set  $A_2$ .
Furthermore,  $\lim_{n \rightarrow \infty} \int q_n$  converges to  $\int f$ 
and  $\lim_{n \rightarrow \infty} \int f_n \text{ converges to } \int g$ .
From HW 3,  $A_1 \wedge A_2$  is an almost
everywhere set.
And both  $\lim_{x \rightarrow \infty} P_n(x) = f(x)$  and
And both  $\lim_{x \rightarrow \infty} P_n(x) = f(x)$  and
And  $\lim_{x \rightarrow \infty} F(x) = g(x)$  for all  $x \in A_1 \cap A_2$ 

Note that for all 
$$x \in \mathbb{R}$$
 we have  
that both  
min  $\{ \mathcal{P}_n(x), \mathcal{Y}_n(x) \} \leq \mathcal{P}_n(x) + \mathcal{Y}_n(x) \}$   
and  
max  $\{ \mathcal{P}_n(x), \mathcal{Y}_n(x) \} \leq \mathcal{P}_n(x) + \mathcal{Y}_n(x) \}$   
Thus,  $\int \min \{ \mathcal{P}_n, \mathcal{T}_n \} \leq \int \mathcal{P}_n + \mathcal{Y}_n$   
and  $\int \max \{ \mathcal{P}_n, \mathcal{T}_n \} \leq \int \mathcal{P}_n + \mathcal{Y}_n$   
and  $\int \max \{ \mathcal{P}_n, \mathcal{T}_n \} \leq \int \mathcal{P}_n + \mathcal{Y}_n$   
and  $\int \max \{ \mathcal{P}_n, \mathcal{T}_n \} \leq \int \mathcal{P}_n + \mathcal{Y}_n$   
So we just need to bound the  
sequence  $(\int (\mathcal{P}_n + \mathcal{T}_n) )_{n=1}^{\infty}$   
This sequence is bounded because it  
This sequence is bounded because it  
 $This sequence \int \lim_{n \to \infty} \int \mathcal{P}_n + \lim_{n \to \infty} \int \mathcal{P}_n + \mathcal{F}_n$   
 $= \lim_{n \to \infty} \int \mathcal{P}_n + \lim_{n \to \infty} \int \mathcal{T}_n = \int \mathcal{F} + \int \mathcal{G}_n$ 

$$5(b) Let f \in L'.$$
Then  $f = g - h$  where  $g, h \in L^{\circ}$ .  

$$Claim: |f| = \max\{g, h\} - \min\{g, h\}.$$

$$Claim: |f| = \max\{g, h\} - \min\{g, h\}.$$

$$pf of claim: Let x \in IR.$$

$$Case I: Suppose g(x) \leq h(x).$$

$$Case I: Suppose g(x) \leq h(x).$$

$$Then, g(x) - h(x) \leq 0.$$

$$S_{\circ}, \qquad |f(x)| = |g(x) - h(x)| = -(g(x) - h(x))$$

$$= h(x) - g(x)$$

and max  $\{9,h\}(x) - \min\{9,h\}(x)$   $= \max\{9(x),h(x)\} - \min\{9(x),h(x)\}$ = h(x) - g(x)

$$\frac{case \ 2:}{Then} Suppose h(x) < g(x),$$
  
Then,  $g(x) - h(x) > 0,$   
 $S_{o},$   
 $|f(x)| = |g(x) - h(x)| = g(x) - h(x)$ 

and  

$$max \{29,h\}(x) - min\{29,h\}(x)$$
  
 $max \{29,h\}(x) - min\{29(x),h(x)\}$   
 $= max\{29(x),h(x)\} - min\{29(x),h(x)\}$   
 $= 9(x) - h(x)$ .

Thus in either case we have  
Thus in either case we have  
that 
$$|f| = \max\{9, h\} - \min\{9, h\}$$
  
that  $|f| = \max\{9, h\} + \lim_{n \to \infty} \{9, h\}$   
that  $\max\{9, h\}$  and  $\min\{9, h\}$   
that  $\max\{9, h\} - \min\{9, h\} \in L$   
Thus,  $|f| = \max\{9, h\} - \min\{9, h\} \in L$ 

(5)(c) Let  $f, g \in L'$ . Then, f-g eL'. By part (b) we have that  $|f-g| \in L'$ . As in HW 4 problem 5 one can Show that  $\min \{f, g\} = \{\pm f + \{\pm g\} - \{\pm f, g\}.$ See HW problem 5 solutions for how to prove this Since L'is closed under addition, Subtraction, and multiplying by a real number we get that  $min \{f, g\} \in L^1.$ A similar proof using  $\max \{f, g\} = \pm f + \pm g + \pm |f - g|$ shows that max & f, g ? E L'.

(G) Since b>D we have that -b≤b. Thus, there are three possibilities: az-b≤b or -b≤a≤b or -b≤b<a.  $mid \{2-b,a,b\} = \begin{cases} -b & \text{if } a < -b \le b \\ a & \text{if } -b \le a \le b \\ b & \text{if } -b \le b < a \end{cases}$ Thus,  $= \begin{cases} -b & \text{if } a < -b \\ a & \text{if } -b \leq a \leq b \\ b & \text{if } b < a \end{cases}$ This gives part of the result.  $mid \{2-b,a,b\} = max \{2-b,min \{2a,b\}\}.$ Let's now show that  $\max\{2-b,\min\{2a,b\}\} = \max\{2-b,a\} = -b$  $= \min\{2-b,a,b\}.$ If a<-b≤b, then If -b≤a≤b, then max {-b, min {a,b}}= max {-b,a}=a = mid 2-b,a,b}

If  $-b \le b \le a$ , then  $\max \{2-b\}, \min \{2a, b\}\} = \max \{-b, b\} = b$   $= \min d \{2-b, a, b\}$ In all three cases we have that  $\max \{2-b\}, \min \{\{a, b\}\}\} = \min \{2-b, a, b\}.$  $\max \{2-b\}, \min \{\{a, b\}\}\} = \min \{2-b, a, b\}.$ 

## (7) (a) By the previous HW problem $mid \{2-b_n,a_n,b_n\} = max\{2-b_n,min\{a_n,b_n\}\}$ Since and and brob, by Hw 2 problem 3, min Zan, bn 3 → min Eq, b]. Since -bn→-b and min {a,bn}→min {a,b} by HWZ problem 3, $\max\{-b_n, \min\{a_n, b_n\}\} \rightarrow \max\{-b, \min\{a, b\}\}.$ Thus, by the previous HW problem, $\operatorname{mid} \{ \{ -b_n, a_n, b_n \} \longrightarrow \operatorname{mid} \{ -b_n, a_n, b_n \}$

(7)(b)We have that  $\lim_{x \to \infty} f_n(x) = f(x)$ for all XEA where A is an almost everywhere set. By problem 7(a) since  $\lim_{n \to \infty} g(x) = g(x)$ for all x we have that lim mid  $\{2-g(x), f_n(x), g(x)\}$  $= mid \{2-g(x), f(x), g(x)\}$ ntm for all XEA. This proves the result. 

(8)(a)Let f and h be measurable. Then from a theorem in class, there exist sequences (fn)n=1 and (hn) =1 where fn EL' and hrel' for all nzl such that hat almost everywhere and  $f_n \rightarrow f$  almost everywhere. Since fr. EL' and hr. EL' for all nzl, we have that  $f_n + h_n \in L'$  for all  $n \gtrsim 1$ . By HW 6 problem 6, fatha -> fth almost everywhere. Thus,  $(f_n + h_n)_{n=1}^{\infty}$  is a sequence of L' functions with fatha > fth for almost all X. By a theorem in class, fth is measurable.

8 (b) Since 
$$f$$
 is measurable,  
there exists a sequence  $(f_n)_{n=1}^{\infty}$   
of L' functions where  
lim  $f(x) = f(x)$  for all  $x \in A$   
 $n \to \infty$   
where  $A$  is an almost everywhere  
set.  
Then,  $\lim_{n \to \infty} \alpha f(x) = \alpha \lim_{n \to \infty} f_n(x)$   
 $= \alpha f(x)$ 

(8)(c) Since f and h are measurable there exists sequences  $(f_n)_{n=1}^{\infty}$ and (hn) n=1 of L' functions  $\lim_{n \to \infty} f_n(x) = f(x) \quad \text{for all } x \in A,$  $\lim_{n \to \infty} h_n(x) = h(x)$  for all  $x \in A_2$ where and where A, and Az are almost Thus, A, MAZ is an almost everywhere set from a theorem from class and HW 3. everywhere sets. From HW 2 problem 3, if XEA, NA2 we have that  $\lim_{x \to \infty} \min \{f_n(x), h_n(x)\} = \min \{f(x), h(x)\}$ 

8)()) Do the same proof as 8(c) but replace min by max.

(8)(e) Let f be a measurable function. Let g be a non-negative function with gel. Suppose  $|f(x)| \leq g(x)$ for all XEA where A is an almost everywhere set. Since  $|f(x)| \leq g(x)$  for all  $x \in A$ we have that  $-g(x) \le f(x) \le g(x)$ for all XEA. Thus, mid  $\{2-g(x),f(x),g(x)\} = f(x)$ for all XEA. Because f is measurable and GEL' and GZO we know mid 2-9, f, g 7 E L'.

Since mid  $\xi$ -9, f, g  $\xi \in L'$  and  $f = \min \{\xi - g, f, g\}$  almost everywhere we know that  $f \in L'$ .

(a) Given 
$$n \ge 1$$
, let  $f_n = f \cdot X_{(-n,n)}$ .  
Thus,  
 $f_n(x) = \begin{cases} f(x) & \text{when } -n \le x \le n \\ 0 & \text{otherwise} \end{cases}$   
 $claim: f_n \in L^1 \text{ for } n \ge 1 \\ 0 & \text{otherwise} \end{cases}$   
 $claim: f_n \in L^1 \text{ for } n \ge 1 \\ 0 & \text{otherwise} \end{cases}$   
 $claim: f_n \in L^1 \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for } n \ge 1 \\ 1 & \text{charged} \text{ for$ 

Then, if  $n \neq N$  we have that  $-n \leq -N \leq x \leq N \leq n$ . So, if  $n \neq N$ , then  $f_n(x) = f(x) \cdot \chi_{[-n,n]}(x) = f(x)$ 1

So, if n z N, then  $|f_n(x) - f(x)| = |f(x| - f(x)|)|$ 

So,  $\lim_{n \to \infty} f_n(x) = f(x)$ claim

Thus,  $(f_n)_{n=1}^{\infty}$  is a sequence of L functions converging to f on all functions. Thus, by a theorem from class of IR. Thus, by a theorem from class f is a measurable function.