

(1) (a)

(1) (b)

(1) (c)

(1) (d)

(2)

Let $x \in \mathbb{R}$ be fixed.
Pick $N_{1}>0$ large enough so that $-N_{1} \leqslant f(x) \leqslant N_{1}$.
Pick $N_{2}>0$ large enough so that $-N_{2} \leqslant x \leqslant N_{2}$.
Let $M=\max \left\{N_{1}, N_{2}\right\}$.
Then, $-M \leqslant f(x) \leqslant M$ and $-M \leqslant x \leqslant M$.

$$
\begin{aligned}
\text { Thus, } & \begin{aligned}
-g_{M}(x) & =-M \cdot \overbrace{X_{[-M, M]}(x)}^{1 \text { since }-M \leq x \leq M} \\
& =-M \leq \underbrace{f(x)}_{1} 5 M \\
& =M \cdot \underbrace{X_{[M}}_{[-M, M]}(x)
\end{aligned} g_{M}(x)
\end{aligned}
$$

That is,

$$
-g_{M}(x) \leqslant f(x) \leqslant g_{M}(x)
$$

So,

$$
f_{M}(x)=\operatorname{mid}\left\{-g_{M}, f, g_{M}\right\}(x)=f(x) \text {. }
$$

Note that if $n \geqslant M$, then $[-M, M] \subseteq[-n, n]$ and so $X_{[-M, M]}(x) \leq X_{[-n, n]}(x)$.

Thus, if $n \geqslant M$, then

$$
\begin{aligned}
& \text { Thus, if } n \geqslant M, X_{[-M, M]}(x) \\
& \begin{aligned}
-g_{n}(x) & =-n \cdot X_{[-n, n]}(x) \leq-n \cdot X_{[-M}(x) \\
& \leqslant-M \cdot X_{[-M, M]}(x) \\
& \leqslant f(x) \leqslant g_{M}(x)=M \cdot X_{[-M, M]}(x) \\
& \leqslant n \cdot X_{[-M, M]}(x)
\end{aligned} \quad \leqslant n \cdot X_{[-n, n]}(x) \\
& \\
& =g_{n}(x) .
\end{aligned}
$$

That is, if $n \geqslant M$, then

$$
-g_{n}(x) \leq f(x) \leq g_{n}(x)
$$

So if $n \geqslant M$, then

$$
\begin{aligned}
f_{n}(x) & =\operatorname{mid}\left\{-g_{n}, f, g_{n}\right\}(x) \\
& =\operatorname{mid}\left\{-g_{n}(x), f(x), g_{n}(x)\right\} \stackrel{ }{=} f(x) .
\end{aligned}
$$

Thus given $\varepsilon>0$, if $n \geqslant M$, then

$$
\begin{aligned}
& \text { hus given } \begin{aligned}
\left|f_{n}(x)-f(x)\right| & =|f(x)-f(x)| \\
& =0<\varepsilon
\end{aligned}
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$.
(3) Let $x \in \mathbb{R}$.

Since $h(x)=\operatorname{mid}\{-g(x), f(x), g(x)\}$ we may break the proof into three causes.
Case 1: Suppose $h(x)=-g(x)$.
Then, $|h(x)|=|-g(x)|=g(x)$.
$g(x) \geqslant 0$
Case 2: Suppose $h(x)=f(x)$.
Then by the def of mid $\{-g(x), f(x), g(x)\}$ we have that $-g(x) \leqslant f(x) \leqslant g(x)$.
Thus, $-g(x) \leq h(x) \leq g(x)$.
So, $|h(x)| \leq g(x)$.
Cause 3: Suppose $h(x)=g(x)$.
Then, $|\ln (x)|=|g(x)|=g(x)$
$g(x) \geqslant 0$
In all three cases, $|h(x)| \leqslant g(x)$.
(4) (a)

From $H W 4$ problem 5, $\min \left\{\varphi_{n}, \psi_{n}\right\}$ is a step function for each $n \geqslant 1$ since φ_{n} and ψ_{n} are step functions.
We now show that the sequence $\min \left\{\varphi_{n}, \psi_{n}\right\}$ is non-decreasing.
Let $n \geqslant 1$ be fixed.
Let $x \in \mathbb{R}$.
Since $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is non-decreasing we have that $\varphi_{n}(x) \leqslant \varphi_{n+1}(x)$.

Since $\left(\Psi_{n}\right)_{n=1}^{\infty}$ is non-decreasing we have that $\psi_{n}(x) \leqslant \Psi_{n+1}(x)$.

We break the rest of the proof into 4 cases.

Cause 1: Suppose $\min \left\{\varphi_{n}(x), \psi_{n}(x)\right\}=\varphi_{n}(x)$ and $\min \left\{\varphi_{n+1}(x), t_{n+1}(x)\right\}=\varphi_{n+1}(x)$.

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
\min \left\{\varphi_{n}, \psi_{n}\right\}(x) & =\min \left\{\varphi_{n}(x), \psi_{n}(x)\right\} \\
& =\varphi_{n}(x) \leqslant \varphi_{n+1}(x) \\
& =\min \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\} \\
& =\min \left\{\varphi_{n+1}, \psi_{n+1}\right\}(x)
\end{aligned}
\end{aligned}
$$

Then,

Cause 2: Suppose $\min \left\{\varphi_{n}(x), \psi_{n}(x)\right\}=\varphi_{n}(x)$ and $\min \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\}=\psi_{n+1}(x)$.

$$
\text { Since } \min \left\{\varphi_{n}(x), \psi_{n}(x)\right\}=\varphi_{n}(x)
$$

we know that $\varphi_{n}(x) \leq \psi_{n}(x)$.
Then,

Cause 3: Suppose $\min \left\{\varphi_{n}(x), \psi_{n}(x)\right\}=\psi_{n}(x)$ and $\min \left\{\varphi_{n+1}(x), t_{n+1}(x)\right\}=\varphi_{n+1}(x)$.
Since $\min \left\{\varphi_{n}(x), \psi_{n}(x)\right\}=\psi_{n}(x)$
we know that $\psi_{n}(x) \leq \varphi_{n}(x)$

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
\min \left\{\varphi_{n}, \psi_{n}\right\}(x) & =\min \left\{\varphi_{n}(x), \psi_{n}(x)\right\} \\
& =\psi_{n}(x) \leqslant \varphi_{n}(x) \leqslant \varphi_{n+1}(x) \\
& =\min \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\} \\
& =\min \left\{\varphi_{n+1}, \psi_{n+1}\right\}(x)
\end{aligned}
\end{aligned}
$$

Then,

Cause 4: Suppose $\min \left\{\varphi_{n}(x), \psi_{n}(x)\right\}=\psi_{n}(x)$ and $\min \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\}=\psi_{n+1}(x)$.
Then,

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
\min \left\{\varphi_{n}, \psi_{n}\right\}(x) & =\min \left\{\varphi_{n}(x), \psi_{n}(x)\right\} \\
& =\psi_{n}(x) \leqslant \psi_{n+1}(x) \\
& =\min \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\} \\
& =\min \left\{\varphi_{n+1}, \psi_{n+1}\right\}(x)
\end{aligned}
\end{aligned}
$$

From cases 1-4 we get that $\left(\min \left\{\varphi_{n}, \psi_{n}\right\}\right)_{n=1}^{\infty}$ is a non-decreasing
sequence of step functions.
(4) (b)

From HW 4 problem 5, $\max \left\{\varphi_{n}, \psi_{n}\right\}$ is a step function for each $n \geqslant 1$ since φ_{n} and ψ_{n} are step functions.
We now show that the sequence $\max \left\{Q_{n}, \psi_{n}\right\}$ is non-decreasing.
Let $n \geqslant 1$ be fixed.
Let $x \in \mathbb{R}$.
Since $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is non-decreasing we have that $\varphi_{n}(x) \leqslant \varphi_{n+1}(x)$.

Since $\left(\Psi_{n}\right)_{n=1}^{\infty}$ is non-decreasing we have that $\Psi_{n}(x) \leqslant \Psi_{n+1}(x)$.

We break the rest of the proof into 4 cases.

Cause 1: Suppose $\max \left\{\varphi_{n}(x), \psi_{n}(x)\right\}=\varphi_{n}(x)$ and $\max \left\{\varphi_{n+1}(x), t_{n+1}(x)\right\}=\varphi_{n+1}(x)$.

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
\max \left\{\varphi_{n}, \psi_{n}\right\}(x) & =\max \left\{\varphi_{n}(x), \psi_{n}(x)\right\} \\
& =\varphi_{n}(x) \leqslant \varphi_{n+1}(x) \\
& =\max \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\} \\
& =\max \left\{\varphi_{n+1}, \psi_{n+1}\right\}(x)
\end{aligned}
\end{aligned}
$$

Then,

Cause 2: Suppose $\max \left\{\varphi_{n}(x), \psi_{n}(x)\right\}=\varphi_{n}(x)$ and $\max \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\}=\psi_{n+1}(x)$.
Since $\max \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\}=\psi_{n+1}(x)$
we know that $\varphi_{n+1}(x) \leq \psi_{n+1}(x)$

$$
\text { Then, } \begin{aligned}
\max \left\{\varphi_{n}, \psi_{n}\right\}(x) & =\max \left\{\varphi_{n}(x), \psi_{n}(x)\right\} \\
& =\varphi_{n}(x) \leqslant \varphi_{n+1}(x) \leqslant \psi_{n+1}(x) \\
& =\max \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\} \\
& =\max \left\{\varphi_{n+1}, \psi_{n+1}\right\}(x)
\end{aligned}
$$

Then,

Cause 3: Suppose $\max \left\{\varphi_{n}(x), \psi_{n}(x)\right\}=\psi_{n}(x)$ and $\max \left\{\varphi_{n+1}(x), t_{n+1}(x)\right\}=\varphi_{n+1}(x)$.
Since $\max \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\}=\varphi_{n+1}(x)$
we know that $\psi_{n+1}(x) \leqslant \varphi_{n+1}(x)$.

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
\max \left\{\varphi_{n}, \psi_{n}\right\}(x) & =\max \left\{\varphi_{n}(x), \psi_{n}(x)\right\} \\
& =\psi_{n}(x) \leqslant \psi_{n+1}(x) \leqslant \varphi_{n+1}(x) \\
& =\max \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\} \\
& =\max \left\{\varphi_{n+1}, \psi_{n+1}\right\}(x)
\end{aligned}
\end{aligned}
$$

Then,

Cause 4: Suppose $\max \left\{\varphi_{n}(x), \psi_{n}(x)\right\}=\psi_{n}(x)$ and $\max \left\{\varphi_{n+1}(x), \psi_{n+1}(x)\right\}=\psi_{n+1}(x)$.

Then,

From cases 1-4 we get that $\left(\max \left\{\varphi_{n}, \psi_{n}\right\}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions.
(5) (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be in L°.
Then there exist non-decreasing sequences of step functions $\left(\varphi_{n}\right)_{n=1}^{\infty}$ and $\left(\psi_{n}\right)_{n=1}^{\infty}$ such that $\varphi_{n} \rightarrow f$ on an almost everywhere set A_{1} and $\psi_{n} \rightarrow g$ on an almost everywhere set A_{2}. Furthermore, $\lim _{n \rightarrow \infty} \int \varphi_{n}$ converges to $\int f$ and $\lim _{n \rightarrow \infty} \int \psi_{n}$ converges to $\int g$.

From HW 3, $A_{1} \cap A_{2}$ is an almost every where set.
And both $\lim _{x \rightarrow \infty} \varphi_{n}(x)=f(x)$ and $\lim _{x \rightarrow \infty} \psi_{n}(x)=y(x)$ for all $x \in A_{1} \cap A_{2}$

Consider the sequences

$$
\begin{aligned}
& \text { Consider the sequences } \\
& \left(\max \left\{\varphi_{n}, \psi_{n}\right\}\right)_{n=1}^{\infty} \text { and }\left(\min \left\{\varphi_{n}, \psi_{n}\right\}\right)_{n=1}^{\infty}
\end{aligned}
$$

From the previous HW problem these are both non-decreasing sequences of step functions.
From HW 2, problem 3, we have that $\min \left\{\varphi_{n}, \psi_{n}\right\} \rightarrow \min \{f, g\}$ on $A_{1} \cap A_{2}$ and

$$
\begin{aligned}
& \operatorname{on} A_{1} \cap A_{2} \text { and } \\
& \max \left\{\varphi_{n}, t_{n}\right\} \longrightarrow \max \{f, g\}
\end{aligned}
$$

$$
\text { on } A_{1} \cap A_{2} \text {. }
$$

To get that max $\{f, g\}$ and $\min \{f, g\}$ are in L° we just have to bound the sequences

$$
\begin{aligned}
& \text { have to bound the sequences } \\
& \left(\left.\int \min \left\{\varphi_{n}, \psi_{n}\right\}\right|_{n=1} ^{\infty} \text { and }\left(\int \max \left\{\varphi_{n}, \psi_{n}\right\}\right)_{n=1}^{\infty}\right.
\end{aligned}
$$

Note that for all $x \in \mathbb{R}$ we have that both

$$
\begin{aligned}
& \text { that both } \\
& \min \left\{\varphi_{n}(x), \psi_{n}(x)\right\} \leqslant \varphi_{n}(x)+\psi_{n}(x)
\end{aligned}
$$

and

$$
\max \left\{\varphi_{n}(x), \psi_{n}(x)\right\} \leq \varphi_{n}(x)+\psi_{n}(x)
$$

Thus, $\int \min \left\{\varphi_{n}, \psi_{n}\right\} \leqslant \int \varphi_{n}+\psi_{n}$

$$
\begin{aligned}
& \text { Thus, } \int \min \left\{\varphi_{n}, \psi_{n}\right\}=\int \max \left\{\varphi_{n}, \psi_{n}\right\} \leqslant \int \varphi_{n}+\psi_{n} \\
& \text { and } \int \operatorname{to}
\end{aligned}
$$

So we just need to bound the sequence $\left(\int\left(\varphi_{n}+\psi_{n}\right)\right)_{n=1}^{\infty}$.
This sequence is bounded because it converges since $\lim _{n \rightarrow \infty} \int\left(\varphi_{n}+t_{n}\right)=$

$$
\begin{aligned}
& \text { converges since } \\
& =\lim _{n \rightarrow \infty} \int \varphi_{n}+\lim _{n \rightarrow \infty} \int \psi_{n}=\int f+\int g .
\end{aligned}
$$

(5) (b) Let $f \in L^{\prime}$.

Then $f=g-h$ where $g, h \in L^{\circ}$.
Claim: $|f|=\max \{g, h\}-\min \{g, h\}$.
of of claim:
Let $x \in \mathbb{R}$.
Case 1: Suppose $g(x) \leq h(x)$.
Then, $g(x)-h(x) \leqslant 0$.
So,

$$
\begin{aligned}
|f(x)|=|g(x)-h(x)| & =-(g(x)-h(x)) \\
& =h(x)-g(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \\
& \max \{g, h\}(x)-\min \{g, h\}(x) \\
& =\max \{g(x), h(x)\}-\min \{g(x), h(x)\} \\
& =h(x)-g(x)
\end{aligned}
$$

and

Case 2: Suppose $h(x)<g(x)$.
Then, $g(x)-h(x)>0$.
So,

$$
|f(x)|=|g(x)-h(x)|=g(x)-h(x)
$$

and

Thus in either case we have that $|f|=\max \{g, h\}-\min \{g, h\}$
By part (a), since $g, h \in L^{0}$ we have that $\max \{g, h\}$ and $\min \{g, h\}$ are in L^{0}.
Thus, $|f|=\max \{g, h\}-\min \{g, h\} \in L^{\prime}$
(5) (c) Let $f, g \in L^{\prime}$.

Then, $f-g \in L^{\prime}$.
By part (b) we have that $|f-g| \in L^{\prime}$.
As in HW 4 problem 5 one can show that

$$
\min \{f, g\}=\frac{1}{2} f+\frac{1}{2} g-\frac{1}{2}|f-g| \&
$$ for how to prove this

Since L^{\prime} is closed under addition, subtraction, and multiplying by a real number we get that

$$
\min \{f, g\} \in L
$$

A similar proof using

$$
\begin{aligned}
& \text { similar proof using } \\
& \max \{f, g\}=\frac{1}{2} f+\frac{1}{2} g+\frac{1}{2}|f-g| \\
&
\end{aligned}
$$

shows that $\max \{f, g\} \in L^{\prime}$.
(6) Since $b \geqslant 0$ we have that $-b \leqslant b$. Thus, there are three possibilities: $a<-b \leqslant b$ or $-b \leqslant a \leqslant b$ or $-b \leqslant b<a$.

Thus,

This gives part of the result.
Let's now show that

$$
\begin{aligned}
& \text { t's now show that } \\
& \operatorname{mid}\{-b, a, b\}=\max \{-b, \min \{a, b\}\} \text {. }
\end{aligned}
$$

If $a<-b \leq b$, then

If $-b \leqslant a \leqslant b$, then

$$
\begin{aligned}
&-b \leq a \leq b, \text { then } \\
& \max \{-b, \min \{a, b\}\}=\max \{-b, a\}=a \\
&=\operatorname{mid}\{-b, a, b\}
\end{aligned}
$$

If $-b \leq b \leq a$, then

In all three cases we have that

$$
\begin{aligned}
& \text { all three cases we have } \\
& \max \{-b, \operatorname{mid}\{a, b\}\}=\operatorname{mid}\{-b, a, b\} \text {. }
\end{aligned}
$$

(7) (a)

By the previous HW problem

$$
\begin{aligned}
& \text { the previous HW problem } \\
& \operatorname{mid}\left\{-b_{n}, a_{n}, b_{n}\right\}=\max \left\{-b_{n}, \min \left\{a_{n}, b_{n}\right\}\right\} \text {. }
\end{aligned}
$$

Since $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$, by HF 2 problem 3 , $\min \left\{a_{n}, b_{n}\right\} \rightarrow \min \{a, b\}$.

Since $-b_{n} \rightarrow-b$ and $\min \left\{a_{n}, b_{n}\right\} \rightarrow \min \{a, b\}$ by $H W 2$ problem 3,

$$
\begin{aligned}
& \text { by } H w 2 \text { problem } \\
& \max \left\{-b_{n}, \min \left\{a_{n}, b_{n}\right\}\right\} \rightarrow \max \{-b, \min \{a, b\}\} .
\end{aligned}
$$

Thus, by the previous HW problem,

$$
\begin{aligned}
& \text { hus, by the previous } \\
& \operatorname{mid}\left\{-b_{n}, a_{n}, b_{n}\right\} \longrightarrow \operatorname{mid}\{-b, a, b\}
\end{aligned}
$$

(7) (b)

We have that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$
for all $x \in A$ where A is an almost everywhere set.
By problem $7(a)$ since $\lim _{n \rightarrow \infty} g(x)=g(x)$ for all x we have that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{mid}\left\{-g(x), f_{n}(x), g(x)\right\} \\
& \quad=\operatorname{mid}\{-g(x), f(x), g(x)\}
\end{aligned}
$$

for all $x \in A$.
This proves the result.
(8) (a)

Let f and h be measurable. Then from a theorem in class, there exist sequences $\left(f_{n}\right)_{n=1}^{\infty}$ and $\left(h_{n}\right)_{n=1}^{\infty}$ where $f_{n} \in L^{\prime}$ and $h_{n} \in L^{\prime}$ for all $n \geqslant 1$ such that $h_{n} \rightarrow h$ almost every where and $f_{n} \rightarrow f$ almost everywhere.
Since $f_{n} \in L^{\prime}$ and $h_{n} \in L^{\prime}$ for all $n \geqslant 1$, we have that $f_{n}+h_{n} \in L^{\prime}$ for all $n \geqslant 1$.
By HW 6 problem 6, $f_{n}+h_{n} \rightarrow f+h$ almost everywhere-
Thus, $\left(f_{n}+h_{n}\right)_{n=1}^{\infty}$ is a sequence of L^{\prime} functions with $f_{n}+h_{n} \rightarrow f+h$ for almost all x.
By a theorem in class, f th is measurable.
(8) (b) Since f is measurable, there exists a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ of L^{\prime} functions where $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in A$ where A is an almost everywhere set.

Then,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \alpha f_{n}(x) & =\alpha \lim _{n \rightarrow \infty} f_{n}(x) \\
& =\alpha f(x)
\end{aligned}
$$

for all $x \in A$.
From a theorem from class, since $f_{n} \in L^{\prime}$ we know that $\alpha f_{n} \in L^{\prime}$.
Thus, $\left(\alpha f_{n}\right)_{n=1}^{\infty}$ is a sequence of L^{\prime} functions that converges almost everywhere to αf. By a theorem from class, αf is measurable.
(8) (c) Since f and h are mearunable there exists sequences $\left(f_{n}\right)_{n=1}^{\infty}$ and $\left(h_{n}\right)_{n=1}^{\infty}$ of L^{\prime} functions where $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in A_{1}$, and $\lim _{n \rightarrow \infty} h_{n}(x)=h(x)$ for all $x \in A_{2}$ where A_{1} and A_{2} are almost everywhere rets.
Thus, $A_{1} \cap A_{2}$ is an almost everywhere set from a theorem from class and HW 3.
From HW 2 problem 3, if $x \in A_{1} \cap A_{2}$ we have that

$$
\begin{aligned}
& \text { From have that } \\
& \text { we have }\left\{f_{n}(x), h_{n}(x)\right\}=\min \{f(x), h(x)\} \\
& \lim _{n \rightarrow \infty} \min \left\{\text { for all } x \in A_{1} \cap A_{2} .\right.
\end{aligned}
$$

for all $x \in A_{1} \cap A_{2}$.

From exercise 5 above, $\min \left\{f_{n}, h_{n}\right\} \in L^{\prime}$ for all $n \geqslant 1$ because $f_{n}, h_{n} \in L^{\prime}$ for all $n \geqslant 1$.
Thus, $\left(\min \left\{f_{n}, h_{n}\right\}\right)_{n=1}^{\infty}$ is a sequence of L^{\prime} functions that converges almost everywhere to $\min \{f, h\}$.

So, by a theorem in class, $\min \{f, h\}$ is measurable.
(8) (d)

Do the same proof as $8(c)$ but replace \min by \max.
(8) (e) Let f be a measurable function.

Let g be a nan-negative function with $g \in L^{\prime}$.
Suppose $|f(x)| \leqslant g(x)$
for all $x \in A$ where A is an almost everywhere set.
Since $|f(x)| \leqslant g(x)$ for all $x \in A$ we have that $-g(x) \leqslant f(x) \leqslant g(x)$ for all $x \in A$.
Thus, $\operatorname{mid}\{-g(x), f(x), g(x)\}=f(x)$ for all $x \in A$.
Because f is measurable and $g \in L^{\prime}$ and $g \geqslant 0$ we know $\operatorname{mid}\{-g, f, g\} \in L^{\prime}$.

Since $\operatorname{mid}\{-g, f, g\} \in L^{\prime}$ and $f=\operatorname{mid}\{-g, f, g\}$ almost everywhere we know that $f \in L^{\prime}$.
(9) Given $n \geqslant 1$, let $f_{n}=f \cdot X_{[-n, n]}$.

Thus,

$$
f_{n}(x)= \begin{cases}f(x) & \text { when }-n \leqslant x \leqslant n \\ 0 & \text { otherwise }\end{cases}
$$

Claim: $f_{n} \in L^{\prime}$ for $n \geqslant 1$
Let $F=E \cap(-n, n)$ Then F has measure zero.

Since f_{r} is continuous on $(-n, n)-F$ and f_{n} is bounded on $[-n, n]$ and f_{n} vanishes outside $[-n, n]$, we have that $f_{n} \in L^{\prime}$ [By Topic 8 Theorem]

$$
\frac{\text { have tam: } \lim _{n \rightarrow \infty} f_{n}(x)=f(x)}{\text { Fix } x \in \mathbb{R} \text {. Fix } \varepsilon>0 .}
$$

Pick $N>0$ where $-N<x<N$.

Then, if $n \geqslant N$ we have that

$$
-n \leq-N \leq x \leq N \leq n \text {. }
$$

So, if $n \geqslant N$, then

$$
f_{n}(x)=f(x) \cdot \underbrace{\mathcal{X}_{[-n, n]}(x)}_{1}=f(x)
$$

So, if $n \geqslant N$, then

$$
\begin{aligned}
& \text { if } n \geqslant N \text {, then } \\
& \begin{aligned}
\left|f_{n}(x)-f(x)\right| & =\mid f(x|-f(x)| \\
& =0<\varepsilon .
\end{aligned}
\end{aligned}
$$

So, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$
claim

Thus, $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of L^{\prime} functions converging to f on all of \mathbb{R}. Thus, by a theorem from class f is a measurable function.

