(1) (a)

Let $\varepsilon>0$.

$$
\begin{array}{r}
\frac{n-1}{n}-\frac{n}{n}=\frac{-1}{n} \\
1-\frac{1}{n}-1
\end{array}
$$

Note that

$$
\begin{aligned}
\left|z_{n}-i\right| & =\left|\frac{1}{n}+i \frac{n-1}{n}-i\right| \\
& =\left|\frac{1}{n}-\frac{1}{n} i\right| \\
& \leq\left|\frac{1}{n}\right|+\left|-\frac{1}{n} i\right| \\
& \left.=\left|\frac{1}{n}\right|+\left|-\frac{1}{n}\right| \underbrace{-}_{i} \right\rvert\, \\
& =\frac{1}{n}+\frac{1}{n} \\
& =\frac{2}{n} .
\end{aligned}
$$

Note that $\frac{2}{n}<\varepsilon$ iff $\frac{2}{\varepsilon}<n$.

Let $N>\frac{2}{\varepsilon}$.
Then if $n \geqslant N>\frac{2}{\varepsilon}$ we have that $\left|z_{n}-i\right|=\frac{2}{n}<\varepsilon$.

So, $\lim _{n \rightarrow \infty} z_{n}=i$.
(1) (b) $z_{n}=\frac{1}{n}+i\left[\frac{n-1}{n}\right]$.

Let $x_{n}=\frac{1}{n}$ and $y_{n}=\frac{n-1}{n}$.
Then $\lim _{n \rightarrow \infty} x_{n}=0$ and $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} \frac{n-1}{n}$

$$
\begin{aligned}
& n \rightarrow \infty \\
&=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=1-0 \\
&=1 .
\end{aligned}
$$

By a the in class,

$$
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} x_{n}+i \lim _{n \rightarrow \infty} y_{n}=0+i(1)=i
$$

2(a)
Let $\varepsilon>0$.

$$
\begin{aligned}
\left|z_{n}-(-2)\right| & =\left\lvert\,\left(\left.-2+i \frac{(-1)^{n}}{n^{2}} \right\rvert\,-(-2)\right)\right. \\
& =\left|i \frac{(-1)^{n}}{n^{2}}\right|=|i| \frac{\left|(-1)^{n}\right|}{\left|n^{2}\right|} \\
& =\frac{1}{n^{2}}
\end{aligned}
$$

Note that $\frac{1}{n^{2}}<\varepsilon$ iff $\frac{1}{\varepsilon}<n^{2}$ iff $\frac{1}{\sqrt{\varepsilon}}<n$.
Pick some $N>\frac{1}{\sqrt{\varepsilon}}$.
If $n \geqslant N>\frac{1}{\sqrt{\varepsilon}}$, then

$$
\left|z_{n}-(-2)\right|=\frac{1}{n^{2}}<\varepsilon
$$

So, $z_{n} \rightarrow-2$.
$2(b)$
Note that

$$
-2 \rightarrow-2
$$

and

$$
\frac{(-1)^{n}}{n^{2}} \rightarrow 0
$$

Thus, by the the in class,

$$
\begin{aligned}
& z_{n}=-2+i \frac{(-1)^{n}}{n^{2}} \\
& \rightarrow-2+i 0=-2 .
\end{aligned}
$$

(3) Let $z_{n}=x_{n}+i y_{n}$ where $x_{n}, y_{n} \in \mathbb{R}$ for all n.
$\Leftrightarrow)$ Suppose that $\left(z_{n}\right)$ is a Cauchy sequence. We will show that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences.
let $\varepsilon>0$. Since $\left(z_{n}\right)$ is a Cauchy sequence, there exists $N>0$ so that if $n, m \geqslant N$ then $\left|z_{n}-z_{n}\right|<\varepsilon$.
Note that $z_{n}-z_{m}=\underbrace{\left(x_{n}-x_{m}\right)}_{\text {Re }\left(z_{n}-z_{m}\right)}+i \underbrace{i\left(y_{n}-y_{m}\right)}_{I_{m}\left(z_{n}-z_{n}\right)}$
Thus, if $n, m \geqslant N$ then

$$
\begin{aligned}
& \text { Thus, if } n, m= \\
& \left|x_{n}-x_{m}\right| \leq\left|z_{n}-z_{m}\right|<\varepsilon \\
& \qquad \begin{array}{l}
|\operatorname{Re}(w)| \leq|w| \\
w=z_{n}-z_{m}=\left(x_{n}-x_{m}\right)+i\left(y_{n}-y_{m}\right)
\end{array}
\end{aligned}
$$

Similarly if $n, m \geqslant N$ then

$$
\begin{aligned}
&\left|y_{n}-y_{m}\right| \leqslant\left|z_{n}-z_{n}\right|<\varepsilon \\
&|\operatorname{Im}(w)| \leqslant|w| \\
& w=z_{n}-z_{m}=\left(x_{n}-x_{m}\right)+i\left(y_{n}-y_{m}\right)
\end{aligned}
$$

(\Longleftrightarrow) Suppose that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences.
Let $\varepsilon>0$.
Since $\left(x_{n}\right)$ is Cauchy, there exists $N,>0$ so that if $n, m \geqslant N_{1}$ then $\left|x_{n}-x_{m}\right|<\frac{\varepsilon}{2}$.
Since $\left(y_{n}\right)$ is Cauchy, there exists $N_{2}>0$ so that if $n, m \geqslant N_{r}$ then $\left|y_{n}-y_{n}\right|<\frac{\varepsilon}{2}$.

Let $N=\max \left\{N_{1}, N_{2}\right\}$.
If $n, m \geqslant N$, then

$$
\begin{aligned}
\left|z_{n}-z_{m}\right| & =\left|\left(x_{n}-x_{m}\right)+i\left(y_{n}-y_{m}\right)\right| \\
& \leqslant\left|x_{n}-x_{m}\right|+\left|i\left(y_{n}-y_{m}\right)\right| \\
& =\left|x_{n}-x_{m}\right|+|i|\left|y_{n}-y_{m}\right| \\
& =\left|x_{n}-x_{m}\right|+\left|y_{n}-y_{m}\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

(4) Suppose $\left(z_{n}\right)_{n=1}^{\infty}$ converges L. Let $\varepsilon=1$.
Then, there exists an integer $N>0$ so that if $n \geqslant N$ we nave that

$$
\left|Z_{n}-L\right|<1
$$

Thus if $n \geqslant N$, then

$$
\begin{aligned}
\left|z_{n}\right| & =\left|z_{n}-L+L\right| \\
& \leq\left|z_{n}-L\right|+|L| \\
& <1+|L|
\end{aligned}
$$

Let

$$
M=\max \left\{\left|z_{1}\right|,\left|z_{2}\right|, \ldots,\left|z_{N-1}\right|,|+|L|\} .\right.
$$

Consider z_{n} for some n.

If $\mid \leq n \leq N-1$, then $\left|z_{n}\right| \leq M$.
If $n \geq N$, then $\left|z_{n}\right| \leq 1+|L| \leqslant M$.
Hence, $\left|z_{n}\right| \leqslant M$ for all n.

Method 1 for \#5
For \#4, we use this fact from class: Suppose $z_{n}=x_{n}+i y_{n}$ and $L=x_{0}+i y_{0}$. $z_{n} \rightarrow L$ iff both $x_{n} \rightarrow x_{0}$ and $y_{n} \rightarrow y_{0}$ re al analysis limits
(5) Suppose $z_{n}=x_{n}+i y_{n}$ and $w_{n}=a_{n}+i b_{n}$ and $A=x_{0}+i y_{0}$ and $B=a_{0}+i b_{0}$
Suppose $z_{n} \rightarrow A$ and $w_{n} \rightarrow B$.
Then, $x_{n} \rightarrow x_{0}, y_{n} \rightarrow y_{0}, a_{n} \rightarrow a_{0}$, and $b_{n} \rightarrow b_{0}$.
(a) Let $\alpha=\alpha_{1}+i \alpha_{2}$ and $\beta=\beta_{1}+i \beta_{2}$.

Note that

$$
\begin{aligned}
& \alpha z_{n}+\beta \omega_{n}=\left(\alpha_{1}+i \alpha_{2}\right)\left(x_{n}+i y_{n}\right) \\
& +\left(\beta_{1}+i \beta_{2}\right)\left(a_{n}+i b_{n}\right) \\
& =\alpha_{1} x_{n}-\alpha_{2} y_{n}+i\left(\alpha_{2} x_{n}+\alpha_{1} y_{n}\right) \\
& +\beta_{1} a_{n}-\beta_{2} b_{n}+i\left(\beta_{2} a_{n}+\beta_{1} b_{n}\right) \\
& =\left(\alpha_{1} x_{n}-\alpha_{2} y_{n}+\beta_{1} a_{n}-\beta_{2} b_{n}\right) \\
& +i\left(\alpha_{2} x_{n}+\alpha_{1} y_{n}+\beta_{2} a_{n}+\beta_{1} b_{n}\right)
\end{aligned}
$$

Since $x_{n} \rightarrow x_{0}, y_{n} \rightarrow y_{0}, a_{n} \rightarrow a_{0}, b_{n} \rightarrow b_{0}$ we have that

$$
\begin{aligned}
\alpha_{1} x_{n}-\alpha_{2} y_{n}+\beta_{1} a_{n}-\beta_{2} b_{n} \rightarrow & \alpha_{1} x_{0}-\alpha_{2} y_{0} \\
& +\beta_{1} a_{0}-\beta_{2} b_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha_{2} x_{n}+\alpha_{1} y_{n}+\beta_{2} a_{n}+\beta_{1} b_{n} & \rightarrow \alpha_{2} x_{0}+\alpha_{1} y_{0} \\
& +\beta_{2} a_{0}+\beta_{1} b_{0}
\end{aligned}
$$

Therefore, by the the in class (and before this solution) we have that $\alpha Z_{n}+\beta \omega_{n}$ converges to

$$
\begin{aligned}
& \left(\alpha_{1} x_{0}-\alpha_{2} y_{0}+\beta_{1} a_{0}-\beta_{2} b_{0}\right) \\
& \quad+i\left(\alpha_{2} x_{0}+\alpha_{1} y_{0}+\beta_{2} a_{0}+\beta_{1} b_{0}\right) \\
& =\left(\alpha_{1}+i \alpha_{2}\right)\left(x_{0}+i y_{0}\right) \\
& + \\
& \quad\left(\beta_{1}+i \beta_{2}\right)\left(a_{0}+i b_{0}\right) \\
& = \\
& \alpha A+\beta B .
\end{aligned}
$$

(b) Note that

$$
\begin{aligned}
z_{n} w_{n} & =\left(x_{n}+i y_{n}\right)\left(a_{n}+i b_{n}\right) \\
& =\left(x_{n} a_{n}-y_{n} b_{n}\right)+i\left(x_{n} b_{n}+y_{n} a_{n}\right)
\end{aligned}
$$

Since $x_{n} \rightarrow x_{0}, y_{n} \rightarrow y_{0}, a_{n} \rightarrow a_{0}, b_{n} \rightarrow b_{0}$ we have that

$$
x_{n} a_{n}-y_{n} b_{n} \rightarrow x_{0} a_{0}-y_{0} b_{0}
$$

and

$$
x_{n} b_{n}+y_{n} a_{n} \rightarrow x_{0} b_{0}+y_{0} a_{0}
$$

By the the in class (or before this solution) we have that

$$
\begin{aligned}
z_{n} w_{n} & =\left(x_{n} a_{n}-y_{n} b_{n}\right)+i\left(x_{n} b_{n}+y_{1} a_{n}\right) \\
& \rightarrow\left(x_{0} a_{0}-y_{0} b_{0}\right)+i\left(x_{0} b_{0}+y_{0} a_{0}\right) \\
& =\left(x_{0}+i y_{0}\right)\left(a_{0}+i b_{0}\right) \\
& =A B
\end{aligned}
$$

Method \#2 for problem 5
$5(a)$ Let $\varepsilon>0$.
Note that

$$
\begin{aligned}
& \text { Note that } \\
& \left|\alpha z_{n}+\beta w_{n}-(\alpha A+\beta B)\right| \\
& =\mid\left(\alpha z_{n}-\alpha A\right)+\left(\beta w_{n}-\beta B \mid\right. \\
& \leq\left|\alpha z_{n}-\alpha A\right|+\left|\beta w_{n}-\beta B\right| \\
& =|\alpha|\left|z_{n}-A\right|+|\beta|\left|w_{n}-B\right| \\
& <(|\alpha|+1)\left|z_{n}-A\right|+\left(|\beta|+1| | w_{n}-B \mid\right.
\end{aligned}
$$

$[$ We are putting $|\alpha|+1$ and $|\beta|+1$ because we will divide by this number we want it to be nonzero and we could have $|\alpha|=0$ or $|\beta|=0$ so that why we replace them by $|\alpha|+1>0$ and

$$
|\beta|+1>0 \text {. }
$$

Since $\lim _{n \rightarrow \infty} z_{n}=A$ and $\lim _{n \rightarrow \infty} w_{n}=B$ there exists $N>0$ such that if $n \geqslant N$ then

$$
\begin{aligned}
& n \geqslant N \text { then } \\
& \left|Z_{n}-A\right|<\frac{\varepsilon}{2(|\alpha|+\mid)}
\end{aligned}
$$

and

$$
\left|w_{n}-B\right|<\frac{\varepsilon}{2(|\beta|+1)}
$$

Thus, if $n \geqslant N$ we have that

$$
\begin{aligned}
& \left|\alpha z_{n}+\beta w_{n}-(\alpha A+\beta B)\right| \\
< & (|\alpha|+1)\left|z_{n}-A\right|+(|\beta|+1)\left|w_{n}-B\right| \\
< & (|\alpha|+1) \frac{\varepsilon}{2(|\alpha|+1)}+(|\beta|+1) \frac{\varepsilon}{2(|\beta|+1)} \\
= & \sum . \quad \text { So, } \alpha z_{n}+\beta w_{n} \rightarrow \alpha A+\beta B
\end{aligned}
$$

$5(b)$ Let $\varepsilon>0$.
Note that

$$
\begin{aligned}
& \left|z_{n} w_{n}-A B\right| \\
= & \left|z_{n} w_{n}-A w_{n}+A w_{n}-A B\right| \\
\leqslant & \left|z_{n} w_{n}-A w_{n}\right|+\left|A w_{n}-A B\right| \\
= & \left|w_{n}\right|\left|z_{n}-A\right|+|A|\left|w_{n}-B\right| \\
& <\left|w_{n}\right|\left|z_{n}-A\right|+\underbrace{(|A|+1)}_{\substack{\text { we won n } \\
\text { we no re } \\
\text { asher here }}}\left|w_{n}-B\right|
\end{aligned}
$$

Since $\left(w_{n}\right)$ converges, by the previous HW problem (w_{n}) is bounded so there exists $M>0$ so that $\left|w_{n}\right| \leq M$ for all n.

Since $z_{n} \rightarrow A$ and $w_{n} \rightarrow B$ there exists $N>0$ so that if $n \geqslant N$ we have that

$$
\left|z_{n}-A\right|<\frac{\varepsilon}{2 M}
$$

and

$$
\left|w_{r}-\beta\right|<\frac{\varepsilon}{2(|A|+1)}
$$

Thus, if $n \geqslant N$ then

$$
\begin{aligned}
& \left|z_{n} w_{n}-A B\right| \\
< & \left|w_{n}\right|\left|z_{n}-A\right|+(|A|+1)\left|w_{n}-B\right| \\
< & M \cdot \frac{\varepsilon}{2 M}+(|A|+1) \frac{\varepsilon}{2(|A|+1)} \\
= & \varepsilon \cdot \quad \text { So, } z_{n} w_{n} \rightarrow A B
\end{aligned}
$$

(6) \Leftrightarrow Suppose F is closed.

Then $\mathbb{C}-F$ is open.
Let $\left(Z_{n}\right)_{n=1}^{\infty}$ be a sequence of points in F.
Suppose $w=\lim _{n \rightarrow \infty} z_{n}$ exists.
Let's show that $w \in F$.
Suppose $w \notin F$.
Then $w \in \mathbb{C}-F$ which is open.
Then w would be an interior point of $\mathbb{C}-F$.
So there would exist $r>0$ such that

$$
D(w ; r) \subseteq \mathbb{C}-F
$$

But since $\lim _{n \rightarrow \infty} z_{n}=w$, there exists $N>0$ such that if

This means $z_{n} \in D(\omega ; r)$
Thus there exists some $z_{n} \in D(w ; r)$,
This contradicts the fact ∇
that $D(\omega ; r) \subseteq \mathbb{C}-F$
since $Z_{n} \in F_{\text {, }}$
Thus, we must have that w is in fact in F.
(\triangleq) Suppose that whenever a sequence of points $\left(z_{\Lambda}\right)_{n=1}^{\infty}$ in F converges and $w=\lim _{n \rightarrow \infty} z_{n}$, then $w \in F$.
Let's show F is closed.
We show that F net being closed leads to a contradiction.
Suppose F is not closed.
Then $\mathbb{C}-F$ is not open.
so there exists $\omega \in \mathbb{C}-F$ where w is not an interior point of $\mathbb{C}-F$.

Thus, for every $n \geqslant 1, D\left(w ; \frac{1}{n}\right) \nsubseteq \mathbb{C}-F$. So, for every $n \geqslant 1$, we can find $z_{n} \in D\left(w, \frac{1}{n}\right)$ such that $z_{n} \notin \mathbb{C}-F$, ie $z_{n} \in F$.
Thus, we can construct a sequence of points $\left(z_{n}\right)_{n=1}^{\infty}$ from F such that

$$
\underbrace{\left|z_{n}-w\right| \leq \frac{1}{n}}_{z_{n} \in D\left(w ; \frac{1}{n}\right)}
$$

I claim then that $\lim _{n \rightarrow \infty} z_{n}=w$.
Let $\varepsilon>0$.
pick $N>0$ such that $\frac{1}{N}<\varepsilon$.
Let $\varepsilon>0$.
Then if $n \geqslant N$ we have that $\frac{1}{n} \leq \frac{1}{N}$ and so $\left|z_{n}-w\right| \leq \frac{1}{n} \leq \frac{1}{N}<\varepsilon$.

So, $\lim _{n \rightarrow \infty} z_{n}=w$ but $w \notin F$.
Contradiction.
Hence, F is closed.
(7) We use this fact from HW.

Let $F \subseteq \mathbb{C}$. Then F is closed iff whenever $\left(Z_{n}\right)_{n=1}^{\infty}$ is a sequence of points in F such that $\lim _{n \rightarrow \infty} z_{n}=\omega$ exists, then $w \in F$

Suppose $\left(z_{n}\right)_{n=1}^{\infty}$ is a sequence of points on $\gamma([a, b])$ such that $\omega=\lim _{n \rightarrow \infty} z_{n}$ exists. We need to show that $w \in \gamma([a, b])$, Define the sequence $\left(t_{n}\right)_{n=1}^{\infty}$ in $[a, b]$ where $\gamma\left(t_{n}\right)=z_{n}$ for each $n \geqslant 1$.
Since $a \leq t_{n} \leq b,\left(t_{n}\right)$ is a bounded sequence in \mathbb{R}.
So by Bolzano -Weierstrass there exists a subsequence $\left(t_{n_{k}}\right)$ that converges to some $\hat{t} \in \mathbb{R}$.

Since $[a, b]$ is a closed set in \mathbb{R}, we have that $\hat{\epsilon} \in[a, b]$.
Since $\left(z_{n_{k}}\right)$ is a subsequence of $\left(z_{n}\right)$, we have that $\lim z_{n_{k}}=w$.

Claim: $\lim _{n_{k} \rightarrow \infty} \gamma\left(t_{n_{k}}\right)=\gamma(\hat{t})$
pf: Let $\varepsilon>0$.
Since $\hat{t} \in[a, b]$ and γ is continuous on $[a, b]$, there exists $\delta>0$ so that if $t \in[a, b]$. $|t-\hat{t}|<\delta$ then $|\gamma(大)-\gamma(\hat{x})|<\varepsilon$
Since $t_{n_{k}} \rightarrow \hat{大}$, there exists $N>0$ so that if $n_{k} \geqslant N$ then $\left|\tan _{n_{k}} \widehat{t}\right|<\delta$.

Thus, if $n_{k} \geqslant N$ we have that $\left|t_{n_{m}}-\hat{大}\right|<\delta$ and So $\left|\gamma\left(t_{n_{k}}\right)-\gamma(\hat{t})\right|<\varepsilon$.
Thus, $\gamma\left(t_{n_{k}}\right) \rightarrow \gamma(\hat{f})$
Claim
Therefore,

$$
\begin{aligned}
& \text { Therefore, } \\
& w=\lim _{n_{k} \rightarrow \infty} z_{n_{k}}=\lim _{n_{k} \rightarrow \infty} \gamma\left(t_{n_{k}}\right)=\gamma(\hat{犬}) \text {. }
\end{aligned}
$$

And $\gamma(\hat{X}) \in \gamma([a, b])$ since $\hat{X} \in[a, b]$.
So, $w \in \gamma([a, b])$.
Therefore, $\gamma([a, b])$ is closed.

