

$$(f) (a)
Let $\xi > 0. \qquad n-1 - n = -\frac{1}{n}
Note that \qquad 1 - \frac{1}{n} - 1
|z_n - \overline{\lambda}| = |\frac{1}{n} + i \cdot \frac{n-1}{n} - \overline{\lambda}|
= |\frac{1}{n} - \frac{1}{n} \cdot \overline{\lambda}|
= |\frac{1}{n}| + |-\frac{1}{n} \cdot \overline{\lambda}|
= |\frac{1}{n}| + |-\frac{1}{n} \cdot \overline{\lambda}|
= \frac{1}{n} + \frac{1}{n}
= \frac{2}{n} \cdot Note that $\frac{2}{n} < \xi \quad \text{iff} \quad \frac{2}{\xi} < n.$$$$

Let
$$N > \frac{2}{5}$$
.
Then if $n \ge N > \frac{2}{5}$ we have
that $|z_n - j| = \frac{2}{n} < 5$.

$$S_{0}/\lim_{n \to \infty} Z_{n} = \lambda$$

$$(1) (b) Z_n = \frac{1}{n} + i \left[\frac{n-1}{n}\right].$$

$$Let X_n = \frac{1}{n} \text{ and } y_n = \frac{n-1}{n}.$$

$$Then \lim_{n \to \infty} X_n = 0 \text{ and } \lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{n-1}{n}.$$

$$By a thm in class,$$

$$\lim_{n \to \infty} Z_n = \lim_{n \to \infty} X_n + i \lim_{n \to \infty} y_n = 0 + i(1) = i.$$

2(a) Let 270. $|Z_n - (-2)| = |(-2 + i + \frac{(-1)^n}{n^2}) - (-2)|$ Note that $= \left| \begin{array}{c} \overline{\lambda} \left(-1 \right)^{n} \\ n^{2} \end{array} \right| = \left| \begin{array}{c} \overline{\lambda} \left(\frac{1(-1)^{n}}{n^{2}} \right) \\ \overline{\lambda} \left(n^{2} \right) \end{array} \right|$ $= \frac{1}{n^2}$ Note that $\frac{1}{n^2} < \varepsilon$ iff $\frac{1}{\varepsilon} < n^2$ iff $\inf f f \frac{1}{\sqrt{5}} < \Lambda.$ Pick some N>JE, If $n_2 N > \frac{1}{\sqrt{2}}$, then $|2_{n}-(-2)| = \frac{1}{n^{2}} < \mathcal{E},$

 $S_{0}, Z_{n} \rightarrow -2.$ (2(b))Note that -2->-2 $(-1)^{n} \rightarrow 0$ h^{2} and Thus, by the thm in class, $Z_n = -2 + J_{n^2} - \frac{(-1)^n}{n^2}$ - - 2 + i 0 = -2.

(3) Let $Z_n = X_n + i y_n$ where $X_n, y_n \in \mathbb{R}$ for all n. (=>) Suppore that (Zn) is a Carchy sequence. We will show that (Xn) and (Yn) are Cauchy sequences. let 270, Since (Zn) is a Cauchy sequence, there exists N>O so that if n,m=N then $|Z_n - Z_n| < \mathcal{E}$, Note that $Z_n - Z_m = (X_n - X_m) + i(y_n - y_m)$ $Re(z_n - z_m) Im(z_n - z_m)$ Thus, if $n, m \ge N$ then m $|X_n-X_m| \leq |Z_n-Z_m| < \mathcal{E}.$ $\begin{aligned} |\operatorname{Re}(w)| \leq |w| \\ w = z_n - z_m = (x_n - x_m) + i(y_n - y_m) \end{aligned}$

Similarly if
$$n, m \ge N$$
 then
 $|y_n - y_m| \le |z_n - z_m| < \varepsilon$
 $|Im(w)| \le |w|$
 $w = z_n - z_m = (x_n - x_m) + i(y_n - y_m)$

(=) Suppose that
$$(x_n)$$
 and (y_n)
one Cauchy sequences.
Let ≤ 70 .
Since (x_n) is Cauchy, there exists
Since (x_n) is Cauchy, there exists
 N_170 so that if $n, m \geq N_1$
then $|x_n - x_m| \leq \frac{\epsilon}{2}$.
Since (y_n) is Cauchy, there exists
 N_270 so that if $n, m \geq N_2$
then $|y_n - y_m| < \frac{\epsilon}{2}$.

Let N=max EN,, N23. n, m, N, then It $|Z_n - Z_m| = |(X_n - X_m) + i(y_n - y_m)|$ $\leq |\chi_n - \chi_m| + |i(y_n - y_m)|$ $= |X_n - X_m| + |\overline{\lambda}| |y_n - y_m|$ $= |\chi_n - \chi_m| + |y_n - y_m|$ $\left\langle \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \right\rangle = \varepsilon$ $\langle \rangle$

(4) Suppose
$$(Z_n)_{n=1}^{\infty}$$
 converges L.
Let $\Sigma = 1$.
Then, there exists an integer N > 0
so that if $n \ge N$ we name that
 $|Z_n - L| < 1$.
Thus if $n \ge N$, then
 $|Z_n| = |Z_n - L + L|$
 $\leq |Z_n - L| + |L|$
 $\leq |Z_n - L| + |L|$
Let
 $M = \max\{|Z_1|, |Z_2|, ..., |Z_{N-1}| = |+|L|\}$.
Consider Z_n for some n .

If $|\leq n\leq N-1$, then $|Z_n|\leq M$. If $n\geq N$, then $|Z_n|\leq 1+|L|\leq M$. Hence, $|Z_n|\leq M$ for all n.

Method 1 for #5
For #4, we use this fact from class:
Suppose
$$Z_n = X_n + iy_n$$
 and $L = X_0 + iy_0$.
 $Z_n \rightarrow L$ iff both $X_n \rightarrow X_0$ and $y_n \rightarrow y_0$
real analysis limits

(5) Suppose
$$Z_n = X_n + iy_n$$
 and
 $W_n = a_n + ib_n$ and $A = X_0 + iy_0$
and $B = a_0 + ib_0$
Suppose $Z_n \rightarrow A$ and $W_n \rightarrow B$.
Then, $X_n \rightarrow X_0$, $Y_n \rightarrow Y_0$, $a_n \rightarrow a_0$,
and $b_n \rightarrow b_0$.

(a) Let
$$\chi = \chi_1 + i \chi_2$$
 and
 $\beta = \beta_1 + i \beta_2$.

Note that $dZ_n + BW_n = (d_1 + i d_2)(X_n + i y_n)$ $+(\beta_1+i\beta_2)(\alpha_n+ib_n)$ $= \alpha_1 \chi_n - \alpha_2 Y_n + i (\alpha_2 \chi_n + \alpha_1 Y_n)$ $+\beta_1a_n - \beta_2b_n + \overline{\lambda}(\beta_2a_n + \beta_1b_n)$ $= (\alpha_1 \chi_n - \alpha_2 y_n + \beta_1 \alpha_n - \beta_2 b_n)$ $+i(\chi_2\chi_n+\chi_1\chi_n+\beta_2\alpha_n+\beta_1b_n)$ Since $x_n \rightarrow x_0, y_n \rightarrow y_0, a_n \rightarrow a_0, b_n \rightarrow b_0$ we have that and $\alpha_2 X_n + \alpha_1 Y_n + \beta_2 \alpha_n + \beta_1 b_n \rightarrow \alpha_2 X_0 + \alpha_1 Y_0$ + Bz Qo + Bibo

Since
$$X_n \rightarrow X_{o}, Y_n \rightarrow Y_{o}, Q_n \rightarrow a_{o}, b_n \rightarrow b_o$$

we have that
 $X_n Q_n - Y_n b_n \rightarrow X_o Q_o - Y_o b_o$
and
 $X_n b_n + Y_n Q_n \rightarrow X_o b_o + Y_o Q_o$
By the this in class (or before
this solution) we have that
 $Z_n W_n = (X_n Q_n - Y_n b_n) + \overline{i} (X_n b_n + Y_n Q_n)$
 $\rightarrow (X_o Q_o - Y_o b_o) + \overline{i} (X_o b_o + Y_o Q_o)$
 $= (X_o + \overline{i} Y_o) (Q_o + \overline{i} b_o)$
 $= A B$

Method #2 for problem 5

[5(a)] let 270. Note that $\left| \chi Z_{n} + \beta W_{n} - (\chi A + \beta B) \right|$ $= \left| \left(\lambda Z_n - \lambda A \right) + \left(\beta W_n - \beta B \right) \right|$ $\leq \left[\chi Z_n - \chi A \right] + \left[\beta W_n - \beta B \right]$ $= |\alpha||z_n - A| + |\beta||w_n - B|$ $< (|\chi|+1) |Z_n-A|+ (|\beta|+1) |W_n-B|$ We are putting [x1+1 and [B]+1 because we will divide by this NVMEER WE want it to be NON-Zero and we could have $|\alpha| = 0$ or |B|=0 ro thats My we replace them by With >0 and BH170,

Since $\lim_{n \to \infty} \mathbb{Z}_n = A$ and $\lim_{n \to \infty} \mathbb{W}_n = B$ there exists N70 such that if $n \ge N$ then $|\mathbb{Z}_n - A| < \frac{\Sigma}{2(|\mathcal{A}|+1)}$ and $|W_n - B| < \frac{\Sigma}{2(|P|+1)}$. Thus, if n > N we have that $\left| \chi Z_{n} + \beta W_{n} - (\chi A + \beta B) \right|$ $< (|x|+1) | Z_n - A| + (|p|+1) | W_n - B|$ $< (|\chi|+1) \frac{\varepsilon}{2(|\chi|+1)} + (|\beta|+1) \frac{\varepsilon}{2(|\beta|+1)}$ So, dZn+BWn J & A+BB. = Z.

5(b)) Let 270, Note that Z, W, - AB $= \left[Z_{\Lambda} W_{\Lambda} - A W_{\Lambda} + A W_{\Lambda} - A B \right]$ $\leq |Z_n w_n - A w_n| + |A w_n - A B|$ $= |w_{n}||z_{n}-A|+|A||w_{n}-B|$ $< \left[W_{n} \right] \left[Z_{n} - A \right] + \left(\left[A \right] + \left[W_{n} - B \right] \right]$ a von-sero number here Since (Wn) converges, by the previous HW problem (wn) is bounded so there exists M70 $|W_n| \leq M$ for all n. so that

Since Z, > A and W, > B there exists N>0 so that that if N>N we have $|Z_n - A| < \frac{\Sigma}{2M}$

and $|w_n - \beta| < \frac{\varepsilon}{2(|A|+1)}$. Thus, if n > N then $|Z_{n}W_{n} - AB|$ < $|W_{n}||Z_{n} - A| + (|A|+1)|W_{n} - B|$ $< M \cdot \frac{\varepsilon}{2M} + (|A|+I) \frac{\varepsilon}{a(|A|+I)}$ So, Z, W,) AB. $= \Sigma$.

that
$$D(w;r) \leq C - F$$

since $Z_n \in F$.
Thus, we must have that w is
in fact in F .
((F)) Suppose that whenever a sequence of
points $(Z_n)_{n=1}^{\infty}$ in F converges and
 $w = \lim_{n \to \infty} Z_n$, then $w \in F$.
Let's show F is closed.
Let's show F is closed.
Let's show that F not being
We show that F not being
We show that F not being
Ne show that F not open.
Closed leads to a contradiction.
Suppose F is not closed.
Then $C - F$ is not closed.
Then $C - F$ is not closed.
Where w is hot an interior
point of $C - F$.

Thus, for every $n \ge 1$, $D(w; \frac{1}{n}) \notin \mathbb{C} - F$. So, for every nzl, We can find $Z_n \in D(w; \frac{1}{n})$ such that $Z_n \notin (\mathbb{C} - F)$ $\int \frac{1}{2} \sqrt{n}$ $ie Z_n \in F$, Thus, we can construct a sequence of points (Zn)n=1 from F such that $|Z_n - w| \leq \frac{1}{n}$ $Z_n \in D(w; \frac{1}{n})$ I claim then that $\lim_{n \to \infty} Z_n = W$. Pick N>O such that N<E. Then if nzN we have that $\frac{1}{N} \leq \frac{1}{N} \quad \text{and} \quad s_0 \quad |Z_n - \omega| \leq \frac{1}{N} \leq \frac{1}{N} < \mathcal{E},$

Contradiction. Hence, F is closed.

(7) We use this fact from HW.

Let $F \subseteq \mathbb{C}$. Then F is closed if f whenever $(\mathbb{Z}_n)_{n=1}^{\infty}$ is a sequence of points in F such that $\lim_{n \to \infty} \mathbb{Z}_n = w$ exists, then $w \in F$

Suppose $(Z_n)_{n=1}^{\infty}$ is a sequence of points on $\mathcal{V}([a,b])$ such that $w = \lim_{n \to \infty} z_n exists.$ We need to show that $w \in \mathcal{V}([a,b])$, Define the sequence $(t_n)_{n=1}^{\infty}$ in [a,b]where $\forall(t_n) = Z_n$ for each $n \ge 1$. Since $a \leq t_n \leq b$, (t_n) is a bounded seguence in R. So by Bolzano-Weierstrass there exists a subsequence (t_{n_k}) that converges to some tER.

Since [a,b] is a closed set in \mathbb{R} , we have that $\widehat{\mathcal{T}} \in [a,b]$. Since (Znk) is a subsequence of (Z_n) , we have that $\lim Z_{n_k} = W$. $\frac{\text{Claim:}}{n_k \neq \infty} \lim Y(t_{n_k}) = Y(\hat{\mathcal{X}})$ 1f: Let 270. Since $\hat{\mathcal{E}} \in [a, b]$ and \mathcal{T} is Continuous on [a,b], there exists 870 so that if $t \in [a,b]$. した-天」<S then)と(大)->(余) |<E Since trutt, there exists N70 so that if MkZN then Itn EI<S.

Thus, if NxZN we have that I trank I < S and So $|\delta(t_{n_n})-\delta(\hat{t})| < \varepsilon$, Thus, $\gamma(\pm n_k) \longrightarrow \gamma(\hat{\pm})$ (claim)

perebore,
$$\begin{split} & \mathcal{W} = \lim_{n_k} \mathcal{Z}_{n_k} = \lim_{n_k \to \infty} \mathcal{V}(t_{n_k}) = \mathcal{V}(\hat{t}). \end{split}$$
And $\delta(\hat{x}) \in \delta([a,b])$ since $\hat{x} \in [a,b]$. $So, W \in \mathcal{V}([a,b]).$

Therefore, $\mathcal{O}([a,b])$ is closed.