Math 5800
HW 8 Solutions

畕苟园
（2）际

(1) Let

$$
f(x)= \begin{cases}0 & \text { if } x \leq 1 \\ \frac{1}{x} & \text { if } x>1\end{cases}
$$

Consider the step function

$$
\varphi_{n}=\sum_{k=2}^{n} \frac{1}{k} \cdot X_{(k-1, k)}
$$

So,

$$
\begin{aligned}
& \varphi_{1}=\frac{1}{2} \cdot X_{(1,2]} \\
& \varphi_{2}=\frac{1}{2} \cdot X_{(1,2]}+\frac{1}{3} \cdot X_{(2,3]} \\
& \text { etc. }
\end{aligned}
$$

Note that $\phi_{n}(x) \leqslant f(x)$ for all $x \in \mathbb{R}$.
For example here is a picture with φ_{3} and f on the same graph.

Since φ_{n} is a step function for each $n \geqslant 1$ we have that $\phi_{n} \in L^{\prime}$ for each $n \geqslant 1$.

We now show that $f \notin L$.
Suppose instead that $f \in L^{\prime}$.
Then $\int f$ is a finite real number.
For each $n \geqslant 1$, since $\varphi_{n} \in L^{\prime}$ and $f \in L^{\prime}$ and $\varphi_{n} \leqslant f$ we have that $\int \varphi_{n} \leq \int f$.

Also, if $n \geqslant 1$, then

$$
\begin{aligned}
& \text { Also, it } n \geqslant 1, \text { then } \\
& \int \Phi_{n}=\sum_{k=2}^{n} \frac{1}{k} \cdot l((k-1, k))=\sum_{k=2}^{n} \frac{1}{k}
\end{aligned}
$$

Thus, for all $n \geqslant 1$ we have that

$$
\frac{\sum_{k=2}^{n} \frac{1}{k}}{\frac{1}{2}+\cdots+\frac{1}{n}} \leqslant \int f
$$

But, $\lim _{n \rightarrow \infty} \sum_{k=2}^{n} \frac{1}{k}=\infty$
because it is $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$ which is one off from the harmonic series.
This implies that $\int f$ is not a finite real number.

Contradiction.
Thus, $f \notin L^{\prime}$.
So, f is not Lebesgue integrable.
(2) Let

$$
\begin{array}{ll}
\text { (2) Let } & \text { if } x \in[0,1) \\
x+1 & \text { if } x \in[1,2) \\
x^{2} & \text { if } x \in[2,3) \\
\ln (x) & \text { if } x \in[3,4) \\
0 & \text { otherwise }
\end{array}
$$

[Note that $\ln (3) \approx 1.0986, \ln (4) \approx 1.3863]$
f is bounded on $[0,4]$.
f vanishes outside $[0,4]$.
And

$$
E=\{x \in(0,4) \mid f \text { is discontinuous at } x\}
$$

$$
=\{1,2,3\}
$$

has measure zero.
Thus, from a theorem in class $f \in L^{\prime}$.
So, f is Lebesgue integrable.
Since $f=f \cdot X_{[0,4)}$
everywhere and $f \in L^{\prime}$ we
have that $f \cdot X_{[0,4)} \in L^{\prime}$.
Thus, $f \in L^{\prime}([0,4))$.

