

Consider the step function $P_n = \sum_{k=2}^{n-1} \frac{1}{k} \cdot \chi(k-1,k)$

Su,

$$P_1 = \frac{1}{2} \cdot \chi_{(1,2]}$$

 $P_2 = \frac{1}{2} \cdot \chi_{(1,2]} + \frac{1}{3} \cdot \chi_{(2,3]}$
 $e+c,$

Note that $P_n(x) \leq f(x)$ for all $x \in \mathbb{R}$. For example here is a picture with P_3 and f on the same graph.

Since P_n is a step function for each n7/l we have that $P_n \in L'$ for each n7/l.

We now show that
$$f \notin L^{1}$$
.
Suppose instead that $f \notin L^{1}$.
Then $\int f$ is a finite real number.
For each $n \not\equiv 1$, since $q_{n} \notin L^{1}$
and $f \notin L^{1}$ and $q_{n} \notin f$
we have that $\int q_{n} \ll \int f$.
Also, if $n \not\equiv 1$, then
 $\int q_{n} = \sum_{k=2}^{n} \frac{1}{k} \cdot l((k-1)k]) = \sum_{k=2}^{n} \frac{1}{k}$
Thus, for all $n \not\equiv 1$ we have that
 $\sum_{k=2}^{n} \frac{1}{k} \ll \int f$.
 $k \equiv 2$
 $\frac{1}{2} + \dots + \frac{1}{n}$

But, $\lim_{n \to \infty} \frac{n}{k=2} \frac{1}{k} = \infty$ because it is =+ ++++... which is one off from the harmonic series. This implies that Sf is not a finite real number. Contradiction. Thus, f E L'. So, f is not Lebesque integrable.

f is bounded on [0,4]. Vanishes outside [0,4]. And $E = \{x \in (0,4) \mid f \text{ is discontinuous at } x\}$ $= \{1, 2, 3\}$ has measure zero. Thus, from a theorem in class fel. So, f is Lebesgue integrable. Since $f = f \cdot \chi_{[0,4]}$ everywhere and FEL' we

