$$
\begin{aligned}
& \text { Math } 5800 \\
& \text { Hw } 7 \text { Solutions }
\end{aligned}
$$

置园
Berosgre
(1) (a)

Let f be a step function. Define the sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ of step functions to be the constant sequence $\phi_{n}=f$ for all $n \geqslant 1$, ie the sequence

$$
\begin{aligned}
& f, f, f, f, f, \ldots \\
& q_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, \varphi_{5}, \ldots
\end{aligned}
$$

This is a non-decreasing sequence since $\phi_{n}=\phi_{n+1}$ for all $n \geqslant 1$.
Also, $\lim _{n \rightarrow \infty} \varphi_{n}(x)=\lim _{n \rightarrow \infty} f(x)=f(x)$ for all $x \in \mathbb{R}$.
Since $\varphi_{n}=f$ is a step function we know that $\int \varphi_{n}=\int f$ is some finite real number.

Thus, $\lim _{n \rightarrow \infty} \int \varphi_{n}=\int f$ converges.
We have satisfied all the properties that are needed to show that $f \in L^{0}$.
(1) (b) Let f be a step function. Then $f \in L^{0}$ by $l(a)$. Since $L^{\circ} \subseteq L^{\prime}$ we have that $f \in L^{\prime}$.
(2) (a)

Let $f=X_{\mathbb{R}}$
We will show that
 $f \notin L^{\prime}$.
We do this by contradiction.
Suppose $f \in L^{\prime}$.
Then $\int f$ is some real number.
Define the step function

$$
\begin{aligned}
& \text { fine the step function } \\
& g_{k}(x)= \begin{cases}1 & \text { if } x \in[-k, k] \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Since $g_{k}=X_{[-k, k]}$ we have that g_{k} is a step function.

From problem 1, $g_{k} \in L^{\prime}$ for each $k \geqslant 1$.

Let's show that $g_{k}(x) \leqslant f(x)$ for all $x \in \mathbb{R}$.
If $x \in[-k, k]$, then $g_{k}(x)=1=f(x)$.
If $x \notin[-k, k]$, then $g_{k}(x)=0<1=f(x)$.
Thus, $g_{k}(x) \leq f(x)$ for all $x \in \mathbb{R}$.
Therefore, from class $\int g_{k} \leq \int f$ for all $k \geqslant 1$.
Also, $\int g_{k}=\int X_{[-k, k]}=1 \cdot[k-(-k)]$

$$
=2 k
$$

Thus, $2 k \leq \int f$ for all $k \geqslant 1$.
But $2 k \rightarrow \infty$ as $k \rightarrow \infty$, thus Sf could not be a real number. Contradiction.
Thus, $f \notin L^{\prime}$.
(2) (b) Let I be a finite interval.
Let $g=X_{I} \cdot f$
Since $f(x)=1$ for all $x \in \mathbb{R}$ this gives that $g=X_{I}$.
Since $X_{ \pm}$is a step function, we have that $g \in L^{\prime}$.
Thus, $f \in L^{\prime}(I)$ by the def of $L^{\prime}(I)$.
(3) (a) and (b) together

Let $f, g \in L^{0}$ and $\alpha, \beta \in \mathbb{R}$ with $\alpha, \beta \geqslant 0$.
Since $f \in L^{0}$ there exists a non-decreasing sequence of step functions $\left(f_{n}\right)_{n=1}^{\infty}$ that converge to f un an almost everywhere set A.
And $\lim _{n \rightarrow \infty} \int f_{n}$ converges.
So that $\int f=\lim _{n \rightarrow \infty} \int f_{n}$.
Since $g \in L^{\circ}$ there exists a non-decreasing sequence of step functions $\left(g_{n}\right)_{n=1}^{\infty}$ that converge to g un an almost everywhere set B.
And $\lim _{n \rightarrow \infty} \int g_{n}$ converges.
So that $\int g=\lim _{n \rightarrow \infty} \int g_{n}$.

We know that $f_{n}(x) \leq f_{n+1}(x)$ and $g_{n}(x) \leqslant g_{n+1}(x)$ for all $n \geqslant 1$ and $x \in \mathbb{R}$.
Since $\alpha, \beta \geqslant 0$ we have that $\alpha f_{n}(x) \leqslant \alpha f_{n+1}(x)$ and $\beta g_{n}(x) \leqslant \beta g_{n+1}(x)$ for all $n \geqslant 1$ and $x \in \mathbb{R}$.

$$
\begin{aligned}
& \text { Rus, } \\
& \alpha f_{n}(x)+\beta g_{n}(x) \leq \alpha f_{n+1}(x)+\beta g_{n+1}(x)
\end{aligned}
$$

Thus,
for all $x \in \mathbb{R}$ and $n \geqslant 1$.
So, $\left(\alpha f_{n}+\beta g_{n}\right)$ is a non-decreasing sequence of step functions.
Since $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in A$ we have that $\lim _{n \rightarrow \infty} \alpha f_{n}(x)=\alpha f(x)$ for all $x \in A$.
Similarly, $\lim _{n \rightarrow \infty} \beta y_{n}(x)=\beta g(x)$

Thus,

$$
\lim \left(\alpha f_{n}(x)+\beta g_{n}(x)\right)=\alpha f(x)+\beta g(x)
$$

for all $x \in A \cap B$.
Since A and B are almost everywhere sets, from $H W, A \cap B$ is an almost everywhere ret.
Thus, $\alpha f_{n}+\beta g_{n} \rightarrow \alpha f+\beta g$ almost $\begin{aligned} & \text { every } \\ & \text { end }\end{aligned}$ everywhere.

By the property of step functions

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int \alpha f_{n}+\beta g_{n} & =\alpha \lim _{n \rightarrow \infty} \int f_{n} \\
& +\beta \lim _{n \rightarrow \infty} \int g_{n} \\
& =\alpha \int f+\beta \int g
\end{aligned}
$$

So, $\left(\alpha f_{n}+\beta g_{n}\right)_{n=1}^{\infty}$ is a sequence of non-decreasing step functions with $\alpha f_{\Lambda}+\beta g_{n} \rightarrow \alpha f+\beta g$ almost everywhere,
and $\lim _{n \rightarrow \infty} \int \alpha f_{n}+\beta g_{n}$ converges.
Thus, $\alpha f+\beta g \in L^{0}$ and

$$
\begin{aligned}
\alpha++\beta g & =\lim _{n \rightarrow \infty} \int \alpha f_{n}+\beta g_{n} \\
& =\alpha \int f+\beta \int g
\end{aligned}
$$

(4) Let $f \in L^{\circ}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$.

Further suppose that $f(x)=g(x)$ for all $x \in A$ where A is an almost everywhere set.

Since $f \in L^{\circ}$ there exists a non-decreasing sequence of step functions $\left(\varphi_{n}\right)_{n=1}^{\infty}$ where $\lim _{n \rightarrow \infty} \varphi_{n}(x)=f(x)$ for all $x \in B$ Where B is an almost everywhere set, and $\lim _{n \rightarrow \infty} \int \varphi_{n}$ converges, and $\int f=\lim _{n \rightarrow \infty} \int \varphi_{n}$.
Since A and B are almost everywhere sets, $A \cap B$ is an almost everywhere set.

And if $x \in A \cap B$ then

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \varphi_{n}(x)=f(x)=g(x) \\
\uparrow \in B \\
x \in A
\end{gathered}
$$

Thus, $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions with $\varphi_{n} \rightarrow g$ almost everywhere.
And $\left(\int \varphi_{n}\right)_{n=1}^{\infty}$ converges.
Thus, $g \in L$ and $\int g=\lim _{n \rightarrow \infty} \int \varphi_{n}=\int f$.
(5)
(a) Since $\int \varphi_{n} \leq M$ for all n, from a theorem in class, because $\left(\Phi_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence we know that $\lim _{n \rightarrow \infty} \int \varphi_{n}$ converges.
Since $\phi_{n} \rightarrow f$ almost everywhere, $f \in L^{\circ}$.
(5) (b) From (a) and the def of L°, we have that

$$
\int f=\lim _{n \rightarrow \infty} \int \varphi_{n}
$$

(5) (c)

We know that $\int \phi_{n} \leqslant M$ for $n \geqslant 1$.
Thus, from 4650 HW2,

$$
\lim _{n \rightarrow \infty} \int q_{n} \leq \lim _{n \rightarrow \infty} M
$$

Thus, $\int f \leqslant M$.
(6) We need a claim:

Claim: $f \cdot X_{[a, b]}=f \cdot X_{[a, c]}+f \cdot X_{[c, b]}$ almost everywhere pf of claim:
If $x \notin[a, b]$, then

$$
\begin{aligned}
\text { i } x \notin[a, b], & \\
\left(f \cdot X_{[a, b]}\right)(x)=f(x) \cdot X_{[a, b]}(x) & =f(x) \cdot 0 \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(f \cdot X_{[a, c]}\right)(x)+\left(f \cdot X_{[c, b]}\right)(x) \\
& =f(x) X_{[a, c]}(x)+f(x) X_{[c, b]}(x) \\
& =f(x) \cdot 0+f(x) \cdot 0=0
\end{aligned}
$$

Thus, the claim is true for $x \notin[a, b]$.

Now suppose $x \in[a, b]$, but $x \neq c$.
case 1: Suppose $a \leq x<c$
Then,

$$
\left(f \cdot x_{[a, b)}\right)(x)=f(x) \underbrace{x_{[a, b]}(x)}_{1}=f(x)
$$

and

$$
\begin{aligned}
& d \\
& \left(f \cdot x_{[a, c]}\right)(x)+\left(f \cdot x_{[c, b]}\right)(x) \\
& =f(x) \underbrace{X_{[a, c)}(x)}_{1}+f(x) \underbrace{x_{[c, b]}}_{0}(x) \\
& =f(x)
\end{aligned}
$$

case 2: Suppose $c<x \leqslant b$
Then,

$$
\left(f \cdot X_{[a, b]}\right)(x)=f(x) \underbrace{X_{[a, b]}(x)}_{1}=f(x)
$$

$$
\begin{aligned}
& \left(f \cdot x_{[a, c]}\right)(x)+\left(f \cdot X_{[c, b]}\right)(x) \\
& =f(x) \underbrace{X_{(a, c)}(x)}_{0}+f(x) \underbrace{X_{[c, b]}}_{1}(x) \\
& \quad=f(x)
\end{aligned}
$$

Thus, from the above $f \cdot X_{[a, b]}=f \cdot X_{[a, c]}+f \cdot X_{[c, b]}$ on $\mathbb{R}-\{c\}$, so almost everywhere. Claim Using the claim we have that

$$
\begin{aligned}
\int_{a}^{b} f & =\int f \cdot x_{[a, b]} \\
& =\int f \cdot x_{[a, c]}+f \cdot x_{[c, b]} \\
& =\int f \cdot x_{[a, c]}+\int f \cdot x_{[c, b]} \\
& =\int_{a}^{c} f+\int_{c}^{b} f
\end{aligned}
$$

(7)

Let $x \in \mathbb{R}$.
If $x \notin[a, b]$, then

$$
\begin{aligned}
& m \cdot X_{[a, b]}=m \cdot 0=0 \\
& f(x) \cdot X_{[a, b]}(x)=f(x) \cdot 0=0
\end{aligned}
$$

and $M \cdot X_{[a, b]}=M \cdot 0=0$.

$$
\begin{aligned}
& \text { Thus, } \\
& m \cdot x_{[a, b]}(x) \leqslant f(x)-X_{[a, b]}(x) \leqslant M \cdot X_{[a, b]}(x) \\
& m \leqslant f(x) \leqslant M
\end{aligned}
$$

If $x \in(a, b]$, then $m \leqslant f(x) \leqslant M$ and so by multiplying by $X_{[a, b]}(x)$ we get that
$m \cdot X_{[a, b]}(x) \leqslant f(x)-X_{[a, b]}(x) \leqslant M \cdot X_{[a, b]}(x)$ Thus, $m \cdot X_{[a, b]} \leq f \cdot X_{[a, b]} \leq M \cdot X_{[a, b]}$.

Since f is integrable on $[a, b]$ we have that $f \cdot X_{[a, b]} \in L^{\prime}$,
Since $m \cdot X_{[a, b]}$ and $M \cdot X_{[a, b]}$ are step functions we have that $m \cdot X_{[a, b]} \in L^{\prime}$ and $M \cdot X_{[a, b]} \in L^{\prime}$.

Thus, since

$$
\begin{aligned}
& \text { s, since } \\
& m \cdot X_{[a, b)} \leqslant f \cdot X_{[a, b]} \leqslant M \cdot X_{(a, b]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { we know that } \\
& \int m \cdot x_{[a, b]} \leqslant \int f \cdot x_{[a, b]} \leqslant \int M \cdot x_{[a, b]}
\end{aligned}
$$

we know that

Thus,

$$
\begin{aligned}
& \text { hus, } \\
& m \cdot(b-a) \leqslant \int_{a}^{b} f \leqslant M \cdot(b-a)
\end{aligned}
$$

(8) (a)

Break the interval $[-1,1]$ into 2^{n} subintervals of width $\Delta_{n}=\frac{1-(-1)}{2^{n}}=\frac{1}{2^{n-1}}$.
There mure

$$
\begin{aligned}
& \text { These we } \\
& I_{n, 1}=\left[-1+0 \cdot \frac{1}{2^{n-1}},-1+1 \cdot \frac{1}{2^{n-1}}\right) \\
& \left.I_{n, 2}=\left[-1+1 \cdot \frac{1}{2^{n-1}}\right)-1+2 \cdot \frac{1}{2^{n-1}}\right) \\
& \vdots \\
& \left.I_{n, k}=\left[-1+(k-1) \frac{1}{2^{n-1}}\right)-1+k \cdot \frac{1}{2^{n-1}}\right) \\
& \vdots \\
& \left.I_{n, 2^{n}}=\left[-1+\left(2^{n}-1\right) \cdot \frac{1}{2^{n-1}}\right)-1+2^{n} \cdot \frac{1}{2^{n-1}}\right]
\end{aligned}
$$

Since $x+1$ is an increasing function on $[-1,1]$, the infimum of $x+1$ on $I_{n, k}$ is the left endpoint.

Thus,

$$
\begin{aligned}
& X_{n}=f(-1) \cdot X_{I_{n, 1}}+f\left(-1+\frac{1}{2^{n-1}}\right) \cdot X_{I_{n, 2}} \\
&+f\left(-1+2 \cdot \frac{1}{2^{n-1}}\right) \cdot X_{I_{n, 3}}+f\left(-1+3 \cdot \frac{1}{2^{n-1}}\right) \cdot X_{I_{n, 4}} \\
&+\ldots+f\left(-1+(k-1) \cdot \frac{1}{2^{n-1}}\right) \cdot X_{I_{n, k}} \\
&+\cdots+f\left(-1+\frac{2^{n}-1}{2^{n-1}}\right) \cdot X_{I_{n, 2^{n}}} \\
&=0 \cdot X_{I_{n, 1}}+\frac{1}{2^{n-1}} \cdot X_{I_{n, 2}}+2 \cdot \frac{1}{2^{n-1}} \cdot X_{I_{n, 3}} \\
& f(x)=x+1+3 \cdot \frac{1}{2^{n-1}} \cdot X_{I_{n, 4}}+\cdots+\left(2^{n}-1\right) \cdot \frac{1}{2^{n-1}} \cdot X_{I_{n, 2^{n}}}
\end{aligned}
$$

We have that

$$
l\left(I_{n, k}\right)=\Delta_{n}=\frac{1}{2^{n-1}}
$$

So,

$$
\begin{aligned}
\int \gamma_{n} & =(0) \cdot \frac{1}{2^{n-1}}+\left(\frac{1}{2^{n-1}}\right) \cdot \frac{1}{2^{n-1}} \\
& +\left(2 \cdot \frac{1}{2^{n-1}}\right) \cdot \frac{1}{2^{n-1}}+\cdots+\left(\frac{2^{n}-1}{2^{n-1}}\right) \cdot \frac{1}{2^{n-1}} \\
& =\sum_{k=1}^{2^{n}}\left((k-1) \cdot \frac{1}{2^{n-1}}\right) \cdot \frac{1}{2^{n-1}} \\
& =\frac{1}{2^{n-1}} \cdot \frac{1}{2^{n-1}} \cdot \sum_{k=1}^{2^{n}}(k-1) \\
& =\left(\frac{1}{2^{n-1}}\right)^{2} \cdot \sum_{l=1}^{2^{n}-1} l=\frac{1+2+3+\cdots+m}{}=\frac{m+1)}{2} \\
& =\left(\frac{1}{2^{n-1}}\right)^{2} \cdot\left[\frac{\left(2^{n}-1\right)\left(2^{n}-1+1\right)}{2}\right] \\
& =\left(\frac{1}{2^{n-1}}\right)^{2} \cdot\left[\left(2^{n}-1\right)\left(2^{n-1}\right)\right]=\frac{2^{n}-1}{2^{n-1}}
\end{aligned}
$$

(8) (b) We have that
γ_{n} is a non-decreasing sequence of step functions with $\gamma_{n} \rightarrow f$ pointwise on all of \mathbb{R}.

Also,

$$
\begin{aligned}
& \text { (so, } \begin{aligned}
\lim _{n \rightarrow \infty} \int \gamma_{n}=\lim _{n \rightarrow \infty}\left[\frac{2^{n}-1}{2^{n-1}}\right] & =\lim _{n \rightarrow \infty}\left[2-\frac{1}{2^{n-1}}\right] \\
& =2
\end{aligned}
\end{aligned}
$$

Thus, $f \in L^{\prime}$ and

$$
\int f=\lim _{n \rightarrow \infty} \int r_{n}=2
$$

(8) (c)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be $g(x)=x+1$.
Then, $g \cdot X_{[-1,1]}=f \in L^{\prime}$.
Thus, $g \in L^{\prime}([-1,1])$ and

$$
\begin{aligned}
\int_{-1}^{1}(x+1) d x & =\int_{-1}^{1} g=\int g \cdot x_{[-1,1]} \\
& =\int f=2
\end{aligned}
$$

(9) (a)

Break the interval $[0,1]$ into 2^{n} subintervals of width $\Delta_{n}=\frac{1-0}{2^{n}}=\frac{1}{2^{n}}$
There me

$$
\begin{aligned}
& \text { There we } \\
& I_{n, 1}=\left[0+0 \cdot \frac{1}{2^{n}}, 0+1 \cdot \frac{1}{2^{n}}\right)=\left[0, \frac{1}{2^{n}}\right) \\
& I_{n, 2}=\left[0+1 \cdot \frac{1}{2^{n}}, 0+2 \cdot \frac{1}{2^{n}}\right)=\left[\frac{1}{2^{n}}, \frac{2}{2^{n}}\right) \\
& \vdots \\
& \vdots \\
& I_{n, k}=\left[0+(k-1) \frac{1}{2^{n}}, 0+k \cdot \frac{1}{2^{n}}\right)=\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right) \\
& \vdots \\
& \vdots \\
& I_{n, 2^{n}}=\left[0+\left(2^{n}-1\right) \cdot \frac{1}{2^{n}}, 0+2^{n} \cdot \frac{1}{2^{n}}\right]=\left[\frac{2^{n}-1}{2^{n}}, \frac{2^{n}}{2^{n}}\right]
\end{aligned}
$$

Since x^{2} is an increasing function on $[0,1]$, the infimum of x^{2} on $I_{n, k}$ is the left endpoint.

Thus,

$$
\begin{aligned}
& X_{n}=f(0) \cdot X_{I_{n, 1}}+f\left(\frac{1}{2^{n}}\right) \cdot X_{I_{n, 2}} \\
&+ f\left(2 \cdot \frac{1}{2^{n}}\right) \cdot X_{I_{n, 3}}+f\left(3 \cdot \frac{1}{2^{n}}\right) \cdot X_{I_{n, 4}} \\
&+\ldots+f\left((k-1) \cdot \frac{1}{2^{n}}\right) \cdot X_{I_{n, k}} \\
&+\cdots+f\left(\frac{2^{n}-1}{2^{n}}\right) \cdot X_{I_{n, 2^{n}}} \\
&=0^{2} \cdot X_{I_{n, 1}}+\left(\frac{1}{2^{n}}\right)^{2} \cdot X_{I_{n, 2}}+\left(\frac{2}{2^{n}}\right)^{2} \cdot X_{I_{n, 3}} \\
& \frac{f(x)=x^{2}}{}+\left(\frac{3}{2^{n}}\right)^{2} \cdot X_{I_{n, 4}}+\ldots+\left(\frac{2^{n}-1}{2^{n}}\right)^{2} \cdot X_{I_{n, 2^{n}}}
\end{aligned}
$$

We have that

$$
\ell\left(I_{n, k}\right)=\Delta_{n}=\frac{1}{2^{n}}
$$

Thus,

$$
\begin{aligned}
\int \gamma_{n}= & 0^{2} \cdot \frac{1}{2^{n}}+\left(\frac{1}{2^{n}}\right)^{2} \cdot \frac{1}{2^{n}}+\left(\frac{2}{2^{n}}\right)^{2} \cdot \frac{1}{2^{n}} \\
& +\cdots+\left(\frac{2^{n}-1}{2^{n}}\right)^{2} \cdot \frac{1}{2^{n}} \\
= & \frac{1}{2^{n}} \cdot \sum_{k=0}^{2^{n}-1}\left(\frac{k}{2^{n}}\right)^{2} \\
= & \left(\frac{1}{2^{n}}\right)^{3} \cdot \sum_{l=1}^{2^{n}-1} l^{2}=\frac{1+2+3+\cdots+m}{2} \\
= & \left(\frac{1}{2^{n}}\right)^{3} \cdot\left[\frac{\left(2^{n}-1\right) \cdot\left(2^{n}-1+1\right)\left(2 \cdot\left(2^{n}-1\right)+1\right)}{6}\right] \\
= & \frac{1}{\left(2^{n}\right)^{3}} \cdot \frac{1}{6} \cdot\left(2^{n}-1\right)\left(2^{n}\right)\left(2^{n+1}-1\right) \\
= & \frac{\left(2^{n}-1\right)\left(2^{n+1}-1\right)}{6 \cdot\left(2^{n}\right)^{2}}=\cdots
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2^{2 n+1}-2^{n}-2^{n+1}+1}{6 \cdot 2^{2 n}} \\
& =\frac{2 \cdot 2^{2 n}-3 \cdot 2^{n}+1}{6 \cdot 2^{2 n}} \\
& 2^{n+1}=2 \cdot 2^{n}
\end{aligned}
$$

(9) (b) We know that γ_{n} is a non-decreasing sequence that converges pointwise to f on \mathbb{R}. Also,

$$
\lim _{n \rightarrow \infty} \int \gamma_{n}=\lim _{n \rightarrow \infty} \frac{2 \cdot 2^{2 n}-3 \cdot 2^{n}+1}{6 \cdot 2^{2 n}}=
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{2-3 \cdot \frac{1}{2^{n}}+\frac{1}{2^{2 n}}}{6} \\
& \begin{array}{l}
\text { divide } \\
\text { top bolton } \\
\text { by } 2^{2 n}
\end{array}
\end{aligned}=\frac{2-3 \cdot 0+0}{6}=\frac{1}{3}
$$

(9) (c)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be $g(x)=x^{2}$
Then, $g \cdot X_{[0,1]}=f \in L^{\prime}$.
Thus, $g \in L^{\prime}([0,1])$ and

$$
\begin{aligned}
\int_{0}^{1} x^{2} d x & =\int_{0}^{1} g=\int g \cdot x_{[0,1]} \\
& =\int f=\frac{1}{3}
\end{aligned}
$$

(10) Let I be a bounded interval.

Let $h=g \cdot X_{I}$.
Then,

$$
h(x)= \begin{cases}1 & \text { if } x \text { is irrational } \\ \text { and } x \in I\end{cases}
$$

We want to show that $h \in L^{\prime}$ and this will show that $g \in L^{\prime}(I)$. Consider the constant sequence

$$
\varphi_{n}=X_{I}
$$

for all $n \geqslant 1$, ie the sequence

$$
x_{I}, x_{I}, x_{I}, x_{I}, \ldots
$$

Then, if $x \in I$ and x is irrational we have that

$$
\begin{aligned}
& \text { we have that } \\
& \begin{aligned}
\lim _{n \rightarrow \infty} \varphi_{n}(x) & =\lim _{n \rightarrow \infty} x_{I}(x)=\lim _{n \rightarrow \infty} 1 \\
& =1=h(x)
\end{aligned}
\end{aligned}
$$

If $x \in I$ and x is rational then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \varphi_{n}(x) & =\lim _{n \rightarrow \infty} x_{ \pm}(x)=\lim _{n \rightarrow \infty} 1 \\
& =1 \neq 0=h(x)
\end{aligned}
$$

If $x \notin I$, then

$$
\begin{aligned}
& x \notin I, \text { then } \\
& \begin{aligned}
\lim _{n \rightarrow \infty} \varphi_{n}(x) & =\lim _{n \rightarrow \infty} x_{I}(x)=\lim _{n \rightarrow \infty} 0 \\
& =0=h(x)
\end{aligned}
\end{aligned}
$$

So, $\varphi_{n} \rightarrow h$ everywhere except on $Q \cap I$ which has measure zero.
So, $Q_{n} \rightarrow h$ almost everywhere.
Since $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is a constant sequence it is non-decreasing.
And, $\lim _{n \rightarrow \infty} \int \varphi_{n}=\lim _{n \rightarrow \infty} l(I)=l(I)$
So, $\left(\int \varphi_{n}\right)_{n=1}^{\infty}$ converges.
Thus, $h \in L^{\prime}$ and $\int h=\lim _{n \rightarrow \infty} \int \varphi_{n}=l(I)$.
So, $g \in L^{\prime}(I)$ and

$$
\int_{I} g=\int g \cdot x_{I}=\int h=l(I)
$$

(11) (a)

(i1)(b) Let $n \geqslant 1$ be fixed.
Then,

$$
\begin{aligned}
& \text { Then, } \\
& g_{n}(x)= \begin{cases}1 & \text { if } x \in\left\{r_{1}, r_{2}, \ldots, r_{n}\right\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

So,

$$
g_{n}=X_{\left[r_{1}, r_{1}\right]}+X_{\left[r_{2}, r_{2}\right]}+\ldots+X_{\left[r_{n}, r_{n}\right]}
$$

Thus, g_{n} is a step function.
We have that

$$
g_{n+1}(x)= \begin{cases}1 & \text { if } x \in\left\{r_{1}, r_{2}, \ldots, r_{n}, r_{n+1}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Thus,

$$
\begin{aligned}
g_{n+1}= & X_{\left[r_{1}, r_{1}\right]}+X_{\left[r_{2}, r_{2}\right]}+\ldots \\
\ldots & +X_{\left[r_{n}, r_{n}\right]}+X_{\left[r_{n+1}, r_{n+1}\right]} \\
= & g_{n}+X_{\left[r_{n+1}, r_{n+1}\right]}
\end{aligned}
$$

Therefore, for any $x \in \mathbb{R}$ we have that

$$
\begin{aligned}
g_{n+1}(x) & =g_{n}(x)+X_{\left[r_{n+1}, r_{n+1}\right]} \\
& \geqslant g_{n}(x)
\end{aligned}
$$

Since

$$
x_{\left[r_{n+1} r_{n+1}\right]}(x) \geqslant 0
$$

$\left[r_{n+1}, r_{n+1}\right]$
So, $\left(g_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions.
(11) (c)

We show that $g_{n} \rightarrow 9$ on \mathbb{R}. Let $x \in \mathbb{R}$.
Case 1: Suppose $x \notin[0,1]$.
Then, $g_{n}(x)=0=g(x)$ for all n.
Thus,

$$
\lim _{n \rightarrow \infty} g_{n}(x)=\lim _{n \rightarrow \infty} 0=0=g(x)
$$

Case 2: Suppose $x \in[0,1]$ and x is irrational

Then, $g_{n}(x)=0=g(x)$ for all n. Thus,

$$
\lim _{n \rightarrow \infty} g_{n}(x)=\lim _{n \rightarrow \infty} 0=0=g(x)
$$

Cause 3: Suppose $x=r_{k}$ for some $k \geqslant 1$.
Choose $N=k$.
Then if $n \geqslant N=k$ we have that

$$
g_{n}(x)=g_{n}\left(r_{k}\right)=1
$$

Let $\varepsilon>0$.
Then if $n \geqslant N$ we have that
Then if $n \geqslant N$ we have that

$$
\begin{aligned}
& \left|g_{n}(x)-g(x)\right|=\left|g_{n}\left(r_{k}\right)-g\left(r_{k}\right)\right| \\
& =|1-1|=0<\varepsilon
\end{aligned}
$$

Thus, $g_{n}(x) \rightarrow g(x)$.

By cause, case 2, case 3 we have that $g_{n} \rightarrow g$ converges pointwise on all of \mathbb{R}.
(11) (d)

$$
\begin{aligned}
\int g_{n} & =\int X_{\left[r_{1}, r_{1}\right]}+X_{\left[r_{2}, r_{2}\right]}+\cdots+X_{\left[r_{1}, r_{1}\right]} \\
& =1 \cdot\left(r_{1}-r_{1}\right)+1 \cdot\left(r_{2}-r_{2}\right)+\cdots+1 \cdot\left(r_{n}-r_{n}\right) \\
& =1 \cdot 0+1 \cdot 0+\cdots+1 \cdot 0=0
\end{aligned}
$$

(11) (e)

Since $\left(g_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions that converges point wise on all of \mathbb{R} to g and $\lim _{n \rightarrow \infty} \int g_{n}=\lim _{n \rightarrow \infty} 0=0$ converges we have that $g \in L^{0}$ and

$$
\int g=\lim _{n \rightarrow \infty} \int g_{n}=0
$$

(12) We induct on s.

Suppose $s=1$.
Then, $T_{1} \subseteq[a, b]$.
Since T_{1} is a bounded interval, T_{1} is of the form $[c, d],[c, d),(c, d]$, or (c, d) where $a \leqslant c \leqslant d \leqslant b$.
Thus, $l\left(T_{1}\right)=d-c \leqslant b-a$.

$$
\begin{gathered}
c \\
d \leq b \\
-c \leq-a
\end{gathered}
$$

Now suppose the problem is true for s disjoint bounded intervals.
Suppose we have st l disjoint bounded intervals $T_{1}, T_{2}, \ldots, T_{s}, T_{s+1}$, where $\bigcup_{i=1}^{s+1} T_{i} \subseteq[a, b]$.

Since the intervals are disjoint we can assume they ore in order on the number line by reordering if necessary

Let c be the left endpoint of T_{1} and d be the right endpoint of T_{s}. Then, $\bigcup_{i=1}^{s} T_{i} \subseteq[c, d]$ and by the induction hypo thesis $\sum_{i=1}^{s} l\left(T_{i}\right) \leq d-c$.
Let m be the left endpoint of T_{s+1} and n be the right endpoint of T_{s+1}.
Note that $a \leq c \leq d \leq m \leq n \leq b$. and by construction $(d-c)+(n-m) \leqslant b-a$.

Thus,

$$
\begin{aligned}
\sum_{i=1}^{h u s,} l\left(T_{i}\right) & =\sum_{i=1}^{s} l\left(T_{i}\right)+l\left(T_{s+1}\right) \\
& \leq(d-c)+(n-m) \\
& \leqslant b-a .
\end{aligned}
$$

Thus, by induction the problem is proved.

