
(1)
$(\stackrel{)}{ })$ Let b be the infimum of S.
Then by def, b is a lower bound for S.
So, (i) is true.
Now lets show (ii).
Let $\varepsilon>0$.
Case 1: Suppose $b \in S$.

Set $x=b$.
Then $x \in S$ and $b \leq x<b+\varepsilon$ is satisfied.
Case 2: Suppose b\&S.
What would happen if there was no $x \in S$ satisfying $b \leq x<b+\varepsilon$?

Then b would no longer be a lower bound for S.

Why?
Set $x=b+\frac{\varepsilon}{2}$.

Then $b \leq x<b+\varepsilon$.
And x would be a lower bound for S, because no elements of S are in the interval $\left[b, b+\frac{\varepsilon}{2}\right]$

This would contradict b being the infimum of S because x would be a greater lower bound than b.
Thus, for case (ii), we must have that there exists $x \in S$ with $b \geqslant x>b+\varepsilon$.

Therefore we have show (i) and $(i i)$. And the proof is complete.
(\notin) Suppose $b \in \mathbb{R}$ and
(i) b is a lower bound for S, and
(ii) for every $\varepsilon>0$ there exists $x \in S$ with $b \leq x<b+\varepsilon$.

We must show that b is the
are true. infinum of s.
We know b is a lower bound for S. We must show that it is the greatest lower bund for S. Let C be another lower bound

We must show that $c \leq b$.
Suppose otherwise, that is
suppose that $b<c$.
Let $\varepsilon=\frac{c-b}{2}$.
Because ε is half the distance between $c \& b$ we have that
 $b<b+\varepsilon<c$.
By property (ii) there would then exist $x \in S$ with $b \leq x<b+\varepsilon$.
But then $x \in S$ and $x<b+\varepsilon<c$.
This would contradict the fact that c is a lower bound for S. Thus, we must have $c \leq b$.
We have show that b is the infinum of S.
(2) Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a non-decreasing sequence where $a_{n} \leq M$ for all $n \geqslant 1$ for some $M \in \mathbb{R}$.
Let $S=\left\{a_{k} \mid k=1,2,3, \ldots\right\}$

$$
=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \cdots\right\}
$$

Then M is an upper bound for S.
Thus, by the completeness axiom for \mathbb{R} we know that the supremum of S exists.

Let $L=\sup (s)$.
We will show that $\lim _{n \rightarrow \infty} a_{n}=L$.

Let $\varepsilon>0$.
Since L is the supremum of S, there exists $a_{N} \in S$ where

$$
L-\varepsilon<a_{N} \leq L
$$

Suppose $n \geqslant N$.
Because $\left(a_{n}\right)_{n=1}^{\infty}$ is non-delreasing
 we know

$$
\begin{aligned}
& \text { we know } \\
& a_{1} \leqslant a_{2} \leqslant a_{3} \leqslant \ldots \leqslant a_{N} \leqslant a_{N+1} \leqslant \cdots \leqslant a_{n} \leqslant \cdots \\
& a_{0} \leqslant a_{n}
\end{aligned}
$$

That is, since $n \geqslant N$ we have $a_{N} \leq a_{n}$. Since $a_{n} \in S$, and L is an upper buran for S we know that $a_{n} \leq L$.

Summaring, if $n \geqslant N$ then

$$
L-\varepsilon<a_{N} \leqslant a_{n} \leqslant L
$$

So, if $n \geqslant N$, then

$$
\begin{aligned}
& \text { if } n \geqslant N, \text { then } \\
& L-\varepsilon<a_{n} \leqslant L<L+\varepsilon
\end{aligned}
$$

That is, if $n \geqslant N$, then

$$
\begin{aligned}
& \text { is, if } n \geqslant a_{n}<L+\varepsilon_{n} \\
& L-\varepsilon<a_{n}<
\end{aligned}
$$

2 same as
So, $\lim _{n \rightarrow \infty} a_{n}=L$

