Homework \#3
Solutions

(1) (a) Let $A, B \subseteq \mathbb{R}$ where $A \subseteq B$.

Suppose B has measure zero.
We will show that A has measure zero Let $\varepsilon>0$.
Since B has measure zero there exists a sequence of bounded open intervals $I_{1}, I_{2}, I_{3}, \ldots$ where

$$
B \subseteq \bigcup_{n=1}^{\infty} I_{n} \text { and } \sum_{n=1}^{\infty} l\left(I_{n}\right) \leq \varepsilon
$$

Since $A \subseteq B$ we have

$$
\begin{aligned}
& A \subseteq B \text { we have } l\left(I_{n}\right) \leq \varepsilon \text {. } \\
& A \subseteq \bigcup_{n=1}^{\infty} I_{n} \text { and } \sum_{n=1}^{\infty} l
\end{aligned}
$$

Thus, A has measure zero.
(1)(b) This is the converse of $1(a)$. "If P, then Q " is equivalent to "If not Q, then not $p^{\prime \prime}$
(2) (a) S has measure zero.

Let $\varepsilon>0$

Let $I_{1}=\left(1-\frac{\varepsilon}{8}, 1+\frac{\varepsilon}{8}\right)$

$$
\begin{aligned}
& I_{1}=\left(2-\frac{\varepsilon}{8}, 2+\frac{\varepsilon}{8}\right) \\
& I_{2}=\left(3-\frac{\varepsilon}{8}, 3+\frac{\varepsilon}{8}\right) \\
& I_{3}=\left(4-\frac{\varepsilon}{8}, 4+\frac{\varepsilon}{8}\right) \\
& I_{4}=(
\end{aligned}
$$

Then, $1 \in I_{1}, 2 \in I_{2}, 3 \in I_{3}, 4 \in I_{4}$.
So, $S \subseteq \bigcup_{n=1}^{4} I_{n}$

And,

$$
\begin{aligned}
& \sum_{n=1}^{4} l\left(I_{n}\right)=l\left(I_{1}\right)+l\left(I_{2}\right)+l\left(I_{3}\right) \\
&+l\left(I_{4}\right) \\
&= \frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}=\varepsilon \\
& \text { for ex, } l\left(I_{1}\right)=\left(1-\frac{\varepsilon}{8}\right)-\left(1+\frac{\varepsilon}{8}\right)=2 \cdot \frac{\varepsilon}{8}=\frac{\varepsilon}{4}
\end{aligned}
$$

Thus, S has measure zen.
(2) (b)

$$
\begin{aligned}
S & =\left\{\left.\frac{1}{n} \right\rvert\, n=1,2,3,4, \ldots\right\} \\
& =\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}
\end{aligned}
$$

For each $n \geqslant 1$, define

$$
\begin{aligned}
\text { each } n & \geqslant 1, \text { aerie } \\
I_{n} & \left.=\left(\frac{1}{n}-\frac{\varepsilon}{2^{n+1}}\right) \frac{\varepsilon}{n}+\frac{\varepsilon}{2^{n+1}}\right)
\end{aligned}
$$

Then, $\frac{1}{n} \in I_{n}$ for $n \geqslant 1$.
Thus, $S \subseteq \bigcup_{n=1}^{\infty} I_{n}$.
Note that $l\left(I_{n}\right)=\left(\frac{1}{n}+\frac{\varepsilon}{2^{n+1}}\right)-\left(\frac{1}{n}-\frac{\varepsilon}{2^{n+1}}\right)$

$$
=2 \cdot \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2^{n}}
$$

So,

$$
\begin{aligned}
\sum_{n=1}^{\infty} l\left(I_{n}\right) & =\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n}} \\
& =\varepsilon\left[\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots\right] \\
& =\frac{\varepsilon}{2}\left[1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots\right] \\
& =\frac{\varepsilon}{2}\left[\frac{1}{1-\frac{1}{2}}\right]=\frac{\varepsilon}{2} \cdot 2=\varepsilon
\end{aligned}
$$

$1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}$
for $-1<x<1$

Thus, S has measure zero.
(3) $(a) S=\{1, \pi, 10\}$ is finite, so S has measure zen.
(3) (b) $S=C h \cap[0,5)$

Since $S \subseteq C_{h}$ and C is
countable, we know that S is countable.
Hence S has measure zero.
(3)(cl We know from class that a set of the form $[a, b]$ where $a<b$ does not have measure zero.
does not have measure
Thus, $[0,1 / 2]$ dues not have measure
zero. From class we know that
We have $\left[0, \frac{1}{2}\right] \subseteq \underbrace{[0,1]}_{5}]$

Thus,
by problem $1(\mathrm{~b})$ of this HW assignment, we know $[0,1]$ does not have measure zero.

(3) (d) Let $\varepsilon=\frac{b-a}{4}$.

Note that

Thus, $a+\varepsilon<b-\varepsilon$ and so $[a+\varepsilon, b-\varepsilon]$ is a well-defined interval.

Note that $[a+\varepsilon, b-\varepsilon] \subseteq(a, b)$

Since $[a+\varepsilon, b-\varepsilon]$ does not have measure zero (by class) and $[a+\varepsilon, b-\varepsilon] \subseteq(a, b)$ we know from problem $1(b)$ of this HW that (a, b) does not have measure zero.
(4) (a)

Since $S_{1}, S_{2}, \ldots, S_{n}$ are almost everywhere sets, we know that

$$
\mathbb{R}-S_{1}, \mathbb{R}-S_{2}, \ldots, \mathbb{R}-S_{n}
$$

have measure zero.
Thus, from a theorem in class, we know that $\bigcup_{k=1}^{n}\left(\mathbb{R}-S_{k}\right)$ has measure zero.
De Morgan's law [Math 34S0] tells us that

$$
\mathbb{R}-\bigcap_{k=1}^{n} S_{k}=\bigcup_{k=1}^{n}\left(\mathbb{R}-S_{k}\right)
$$

Thus, $\mathbb{R}-\bigcap_{k=1}^{n} S_{k}$ has measure zero.
Thus, $\bigcap_{k=1}^{n} S_{k}$ is an almost everywhere set.
(4) (b) Same proof as $4(a)$ but turn $\bigcap_{k=1}^{n} S_{k}$ into $\bigcap_{k=1}^{\infty} S_{k}$
(5) (a)

And $f(x) \neq g(x)$ iff $x \in \mathbb{Z}$.
\mathbb{Z} is countable and hence has measure zero.
Since $f(x)=g(x)$ except on the ret \mathbb{Z} of measure zero we have that $f=g$ almost everywhere.
(5) (b)

Note that $f(x) \neq g(x)$ iff $x \in\{1,6,8\} \cup\{-1,-2,-3, \ldots\}$ So, $f(x) \neq g(x)$ un a countable and hence measure zero set. Thus $f=g$ almost everywhere.
(5) (c)

$$
f(x) \neq g(x) \text { iff } x=-1,2,5
$$

So, $f(x)=g(x)$ except on a countable and hence measure zero set.
so, $f=g$ almost everywhere.
(5) (d) $f(x) \neq g(x)$ iff $x \notin \mathbb{Z}$
if $x \in \mathbb{R}-\mathbb{Z}$
$\mathbb{R}-\mathbb{C}$ does not have measure zero since for example $(0,1) \subseteq \mathbb{R}-\mathbb{Z}$ and $(0,1)$ does not have measure zero free problem $3(d)$.

Thus, $f \neq g$ almost everywhere.
(6) (a) Let $A \subseteq B$ where A is an almost everywhere set.
Then $\mathbb{R}-A$ has measure zero.
But $\mathbb{R}-B \subseteq \mathbb{R}-A$, and hence
Since $A S B$ by problem |cal of this HW, we know $\mathbb{R}-B$ has measure zero.
So, B is an almost everywhere set.
$(6)(b)$
Since $f=g$ almost everywhere in \mathbb{R}, we know that

$$
E_{1}=\{x \mid f(x)=g(x)\}
$$

is an almost everywhere set, ie $\mathbb{R}-E_{1}$ has measure zero.

Since $h(x)=5$ almost everywhere in \mathbb{R}, we know that

$$
E_{2}=\{x \mid h(x)=5\}
$$

is an almost everywhere set, ie $\mathbb{R}-E_{2}$ has measure zero.

Claim: $E_{1} \cap E_{2}$ is an almost everywhere set.
pf of claim: $\mathbb{R}-\left(E_{1} \cap E_{2}\right)$

$$
=\left(\mathbb{R}-E_{1}\right) \cup\left(\mathbb{R}-E_{2}\right)
$$

has measure zero since $\mathbb{R}-E_{1}$ and $\mathbb{R}-E_{2}$ have measure zero and hence their union has measure zero.
Thus $E_{1} \cap E_{2}$ is an almost everywhere set. claim

$$
\begin{aligned}
& \text { hus, } \\
& E_{1} \cap E_{2}=\{x \mid f(x)=g(x) \text { and } h(x)=5\} \\
&
\end{aligned}
$$

Thus,
is an almost everywhere set and if $x \in E_{1} \cap E_{2}$ then $f(x)=g(x)$ and $h(x)=5$ and thus $f(x)+h(x)=g(x)+S$.

Now,

$$
B=\{x \mid f(x)+h(x)=g(x)+5\}
$$

satisfies $E_{1} \cap E_{2} \subseteq B$.
Since $E_{1} \cap E_{2}$ is an almost everywhere set, by part (a), B is an almost everywhere set.

Thus, $f(x)+h(x)=g(x)+S$ for almost all x.

