
(1) Since $\left(b_{n}\right)_{n=1}^{\infty}$ is non-decreasing we have $b_{n} \leqslant b_{n+1}$ for all $n \geqslant 1$.
We will show that $b_{n} \leqslant L$ for all $n \geqslant 1$.
Suppose instead that $b_{m}>L$ for some $m \geqslant 1$.

Then

$$
L<b_{m} \leqslant b_{m+1} \leqslant b_{m+2} \leqslant \cdots
$$

That is, $L<b_{m} \leqslant b_{n}$ for all $n \geqslant m$, So, $0<b_{m}-L \leqslant b_{n}-L$ for all $n \geqslant m$.

Let $\varepsilon=b_{n}-L$.
Since $\lim _{n \rightarrow \infty} b_{n}=L$ we know there exists $N>0$ where

$$
\left|b_{n}-L\right|<\varepsilon
$$

Let $\hat{N}=\max \{N, m\}$.
Let $n \geqslant \widehat{N}$
Then, since $n \geqslant m$ we have

$$
\begin{aligned}
& n \text { since } n \geqslant m \underbrace{b_{m}-L}_{\varepsilon} \leqslant b_{n}-L \text { know }
\end{aligned}
$$

Since $n \geqslant N$ we know

$$
\begin{aligned}
& \text { ce } n \geqslant N \text { we } \\
& b_{n}-L=\left|b_{n}-L\right|<\varepsilon .
\end{aligned}
$$

Combining we have $\varepsilon \leq b_{n}-L<\varepsilon$.
Contradiction.
Hence $b_{n} \leq 2$ for all $n \geq 1$.
(2) Similar to the proof for problem 1.
Try it.
(3) (a) Let $\varepsilon>0$.

Since $S_{n} \rightarrow s$ there exists $N_{1}>0$ where $\left|s_{n}-s\right|<\varepsilon$ for $n \geqslant N_{1}$
same as: $s-\varepsilon<s_{n}<s+\varepsilon$
Since $t_{n} \rightarrow t$ there exists $N_{2}>0$ where
$\left|t_{n}-t\right|<\varepsilon$ for $n \geqslant N_{2}$
same as: $t-\varepsilon<t_{n}<t+\varepsilon$
Let $N=\max \left\{N_{1}, N_{2}\right\}$.
So, if $n \geqslant N$ then both

$$
\begin{aligned}
& s-\varepsilon<s_{n}<s+\varepsilon \\
& t-\varepsilon<t_{n}<t+\varepsilon
\end{aligned}
$$

and $t-\varepsilon<t_{n}<t+\varepsilon$.
We now consider two cases for some $n \geqslant N$.

Case 1: Suppose $\max \left\{S_{n}, t_{n}\right\}=S_{n}$ for some fixed n with $n \geqslant N$.

Then from the previous page we have

$$
\max \left\{s_{n}, \tan _{n}\right\}=s_{n}<s+\varepsilon \leq \max \{s, t\}+\varepsilon
$$

So,

$$
\max \left\{s_{n}, t_{n}\right\}<\max \{s, t\}+\varepsilon
$$

Now we get a lower bound on $\max \left\{s_{n}, t_{n}\right\}$.
We need two sub-cases.
If $\max \{s, t\}=s$, then

$$
\begin{aligned}
& \text { f } \max \{s, t\}=s, \text { then } \\
& \max \{s, t\}-\varepsilon=s-\varepsilon<S_{n}=\max \left\{S_{n}, t_{n}\right\}
\end{aligned}
$$

So, in this sub-case, $\max \{s, t\}-\varepsilon<\max \left\{s_{n}, t_{n}\right\}$
If $\max \{s, t\}=t$, then

$$
\begin{aligned}
& \text { If } \max \{s, t\}=t \text {, then } \\
& \max \{s, t\}-\varepsilon=t-\varepsilon<t_{n} \leqslant \max \left\{s_{n}, t_{n}\right\}
\end{aligned}
$$

So, in this sub-case, $\max \{s, t\}-\varepsilon<\max \left\{s_{n}, t_{n}\right\}$
Combining the abuse we have that

$$
\begin{aligned}
& \text { Combining the above we have that } \\
& \max \{s, t\}-\Sigma<\max \left\{S_{n}, t_{n}\right\}<\max \{S, t\}+\varepsilon
\end{aligned}
$$

Case 2: Suppose $\max \left\{S_{n}, t_{n}\right\}=t_{n}$ for some fixed n with $n \geqslant N$.

Then from the previous page we have

$$
\max \left\{s_{n}, t_{n}\right\}=t_{n}<t+\varepsilon \leq \max \{s, t\}+\varepsilon
$$

So,

$$
\max \left\{s_{n}, t_{n}\right\}<\max \{s, t\}+\varepsilon
$$

Now we get a lower bound on $\max \left\{s_{n}, t_{n}\right\}$.
We need two sub-cases.
If $\max \{s, t\}=s$, then

$$
\begin{aligned}
& \text {-f } \max \{s, t\}=S \text {, then } \\
& \max \{s, t\}-\varepsilon=S-\varepsilon<S_{n} \leq \max \left\{S_{n}, t n\right\}
\end{aligned}
$$

So, in this sub-case, $\max \{s, t\}-\varepsilon<\max \left\{s_{n}, t_{n}\right\}$
If $\max \{s, t\}=t$, then

$$
\begin{aligned}
& \text { If } \max \{s, t\}=t \text {, then } \\
& \max \{s, t\}-\varepsilon=t-\varepsilon<t_{n}=\max \left\{s_{n}, t_{n}\right\}
\end{aligned}
$$

So, in this sub-case, $\max \{s, t\}-\varepsilon<\max \left\{s_{n}, t_{n}\right\}$
Combining the above we have that

$$
\begin{aligned}
& \text { Combining the abuse we have that } \\
& \max \{s, t\}-\Sigma<\max \left\{S_{n}, t_{n}\right\}<\max \{s, t\}+\varepsilon
\end{aligned}
$$

Thus, combining cases 1 and 2 we get that if $n \geqslant N$, then

$$
\max \{s, t\}-\varepsilon<\max \left\{s_{n}, t_{n}\right\}<\max \{s, t\}+\varepsilon
$$

Thus, if $n \geqslant N$, then

$$
\begin{aligned}
& \text { us, if } n \geqslant N \text {, then } \\
& \left|\max \left\{s_{n}, t_{n}\right\}-\max \{s, t\}\right|<\varepsilon .
\end{aligned}
$$

So,

$$
\lim _{n \rightarrow \infty} \max \left\{s_{n}, t_{n}\right\}=\max \left\{s_{1} t\right\}
$$

(3) (b)

This proof is similar to the proof of $3(a)$.

Try it.
(4) Suppose $\left(a_{n}\right)_{n=1}^{\infty}$ converges to L. Let $\varepsilon=1$.
Then there exists $N>0$ where if $n \geqslant N$ then $\left|a_{n}-L\right|<1$.

Thus, if $n \geqslant N$ then

$$
\begin{aligned}
\left|a_{n}\right| & =\left|a_{n}-L+L\right| \\
& \leqslant\left|a_{n}-L\right|+|L| \\
& <1+|L|
\end{aligned}
$$

Let

Then, $\left|a_{n}\right| \leqslant M$ for all $n \geqslant 1$.

