(7)
Since
$$\lim_{n \to \infty} a_n = A$$
 and $\lim_{n \to \infty} b_n = B$
we know that $\lim_{n \to \infty} (a_n - b_n) = A - B$.

$$-\varepsilon - u_m + b_m - B < -A.$$

Multiplying by
$$-1$$
 gives
 $A < z + (a_m - b_m) + B$
Recall that $a_m \le b_m$.
Thus, $a_m - b_m \le 0$.
So, we get that
 $A < z + (a_m - b_m) + B \le z + B$
 $A < z + (a_m - b_m) + B \le z + B$

So,
$$A < \varepsilon + B$$
.
Thus, $A - B < \varepsilon$.
Summarizing, we have that
 $A - B < \varepsilon$ for every $\varepsilon > 0$.
Hence $A - B \leq 0$.
Thus, $A \leq B$.