(7)

Since $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$
we know that $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=A-B$.
Let $\varepsilon>0$.
Then there exists $N>0$ where if $n \geqslant N$ then $\left|\left(a_{n}-b_{n}\right)-(A-B)\right|<\varepsilon$
Pick some fixed $m \geqslant N$.
Then $\left|a_{m}-b_{m}-A+B\right|<\varepsilon$.
Thus, $-\varepsilon<a_{n}-b_{m}-A+B<\varepsilon$

$\varepsilon \leftrightarrow$| Recall |
| :--- |
| $\|x\|<c$ |
| means |
| $-c<x<c$ |
| if $c>0$ |

Thus,

In particular,

$$
-\varepsilon-a_{n}+b_{m}-B<-A
$$

Multiplying by - 1 gives

$$
A<\varepsilon+\left(a_{m}-b_{m}\right)+B
$$

Recall that $a_{n} \leq b_{n}$.
Thus, $a_{m}-b_{m} \leqslant 0$.
So, we get that

$$
\begin{aligned}
& \text { 0, we get that } \\
& A<\varepsilon+\underbrace{\left(a_{n}-b_{n}\right)}_{\leqslant 0}+B \leqslant \varepsilon+B
\end{aligned}
$$

So, $A<\varepsilon+B$.
Thus, $A-B<\varepsilon$.
Summarizing, we have that $A-B<\varepsilon$ for every $\varepsilon>0$.

Hence $A-B \leq 0$.
Thus, $A \leq B$.

