Math 5800
 Homework \# 9
 Measurable Functions

1. (a) Let $f(x)=x^{2}$ for all x. Let $g=\chi_{[-1,2)}$.

Draw a picture of f, g, and $-g$.
Draw a picture of $\operatorname{mid}\{-g, f, g\}$.
(b) Let $f(x)=x^{2}$ for all x. Let $g=\chi_{[-3,-1)}$.

Draw a picture of f, g, and $-g$.
Draw a picture of $\operatorname{mid}\{-g, f, g\}$.
(c) Let $f(x)=2 x$ for all x. Let $g_{n}=n \cdot \chi_{[-n, n]}$ for $n \geq 1$. Draw a picture of $f_{1}=\operatorname{mid}\left\{-g_{1}, f, g_{1}\right\}$ and $f_{2}=\operatorname{mid}\left\{-g_{2}, f, g_{2}\right\}$.
(d) Let

$$
f(x)=\left\{\begin{array}{cc}
x-1 & \text { if } x<0 \\
3 & \text { if } x=0 \\
x & \text { if } 0<x
\end{array}\right.
$$

Let $g_{n}=n \cdot \chi_{[-n, n]}$ for $n \geq 1$.
Draw a picture of $f_{1}=\operatorname{mid}\left\{-g_{1}, f, g_{1}\right\}, f_{2}=\operatorname{mid}\left\{-g_{2}, f, g_{2}\right\}$, $f_{3}=\operatorname{mid}\left\{-g_{3}, f, g_{3}\right\}$, and $f_{4}=\operatorname{mid}\left\{-g_{4}, f, g_{4}\right\}$
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. For $n \geq 1$ define $g_{n}=n \cdot \chi_{[-n, n]}$. Let $f_{n}=$ $\operatorname{mid}\left\{-g_{n}, f, g_{n}\right\}$. Prove that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in \mathbb{R}$
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$. Suppose that g is a non-negative function, that is $g \geq 0$. Let $h=\operatorname{mid}\{-g, f, g\}$. Prove that $|h| \leq g$. [That is, prove that $|h(x)| \leq g(x)$ for all $x \in \mathbb{R}$.]
4. Recall that given two functions $h, k: \mathbb{R} \rightarrow \mathbb{R}$, define $\max \{h, k\}: \mathbb{R} \rightarrow \mathbb{R}$ and $\min \{h, k\}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
(\max \{h, k\})(x)=\max \{h(x), k(x)\}
$$

and

$$
(\min \{h, k\})(x)=\min \{h(x), k(x)\}
$$

(a) If $\left(\phi_{n}\right)_{n=1}^{\infty}$ and $\left(\psi_{n}\right)_{n=1}^{\infty}$ are non-decreasing sequences of step functions prove that the sequence $\left(\min \left\{\phi_{n}, \psi_{n}\right\}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions.
(b) If $\left(\phi_{n}\right)_{n=1}^{\infty}$ and $\left(\psi_{n}\right)_{n=1}^{\infty}$ are non-decreasing sequences of step functions prove that the sequence $\left(\max \left\{\phi_{n}, \psi_{n}\right\}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions.
5. Recall the definition of $\min \{h, k\}$ and $\max \{h, k\}$ given above.
(a) Let f and g be in L^{0}. Prove that $\min \{f, g\}$ and $\max \{f, g\}$ are in L^{0}.
(b) Let f be in L^{1}. Then $|f|$ is in L^{1}.
(c) Let f and g be in L^{1}. Prove that $\min \{f, g\}$ and $\max \{f, g\}$ are in L^{1}.
[
Hint for (a): Use the result from the previous exercise.
Hint for (b): If $f=g-h$ where $g \in L^{0}$ and $h \in L^{0}$ show that $|f|=$ $\max \{g, h\}-\min \{g, h\}$.
Hint for (c): Use the fact that

$$
\min \{h, k\}=\frac{1}{2} h+\frac{1}{2} k-\frac{1}{2}|h-k|
$$

and

$$
\max \{h, k\}=\frac{1}{2} h+\frac{1}{2} k+\frac{1}{2}|h-k|
$$

]
6. Let $a, b \in \mathbb{R}$ with $b \geq 0$. Prove that

$$
\operatorname{mid}\{-b, a, b\}=\max \{-b, \min \{a, b\}\}=\left\{\begin{array}{cc}
-b & \text { if } a<-b \\
a & \text { if }-b \leq a \leq b \\
b & \text { if } b<a
\end{array}\right.
$$

[Hint: Break it into three cases:
$a<-b \leq b,-b \leq a \leq b$, and $-b \leq b<a$.]
7. (a) Let $a, b \in \mathbb{R}$. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be sequences of real numbers where $b_{n} \geq 0$ for all n. Prove that if $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$, then $\operatorname{mid}\left\{-b_{n}, a_{n}, b_{n}\right\} \rightarrow \operatorname{mid}\{-b, a, b\}$.
(b) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions with $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ where g is a non-negative function. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for almost all x, then $\lim _{n \rightarrow \infty} \operatorname{mid}\left\{-g, f_{n}, g\right\}(x)=\operatorname{mid}\{-g, f, g\}(x)$ for almost all x.
8. Let f and h be measurable functions. Let $\alpha \in \mathbb{R}$. Prove the following.
(a) $f+h$ is measurable
(b) $\alpha \cdot f$ is measurable.
(c) $\min \{f, h\}$ is measurable.
(d) $\max \{f, h\}$ is measurable.
(e) Let g be a non-negative function in L^{1}. Suppose that $|f(x)| \leq g(x)$ for almost all x. Prove that f is in L^{1}.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Let

$$
E=\{x \in \mathbb{R} \mid f \text { is discontinuous at } x\} .
$$

Suppose that E has measure zero. Further suppose that f is bounded on any interval $[a, b]$. Prove that f is a measurable function.
[Hint: Let $f_{n}=f \cdot \chi_{[-n, n]}$. Show that $f_{n} \in L^{1}$ for all $n \geq 1$. Then show that $f_{n} \rightarrow f$ on all of \mathbb{R}.]

