Math 5800

Homework # 9

Measurable Functions

- 1. (a) Let $f(x) = x^2$ for all x. Let $g = \chi_{[-1,2]}$. Draw a picture of f, g, and -g. Draw a picture of mid $\{-g, f, g\}$.
 - (b) Let $f(x) = x^2$ for all x. Let $g = \chi_{[-3,-1)}$. Draw a picture of f, g, and -g. Draw a picture of mid $\{-g, f, g\}$.
 - (c) Let f(x) = 2x for all x. Let $g_n = n \cdot \chi_{[-n,n]}$ for $n \ge 1$. Draw a picture of $f_1 = \min\{-g_1, f, g_1\}$ and $f_2 = \min\{-g_2, f, g_2\}$.
 - (d) Let

$$f(x) = \begin{cases} x - 1 & \text{if } x < 0\\ 3 & \text{if } x = 0\\ x & \text{if } 0 < x \end{cases}$$

Let $g_n = n \cdot \chi_{[-n,n]}$ for $n \ge 1$. Draw a picture of $f_1 = \min\{-g_1, f, g_1\}, f_2 = \min\{-g_2, f, g_2\}, f_3 = \min\{-g_3, f, g_3\}, \text{ and } f_4 = \min\{-g_4, f, g_4\}$

- 2. Let $f : \mathbb{R} \to \mathbb{R}$. For $n \ge 1$ define $g_n = n \cdot \chi_{[-n,n]}$. Let $f_n = \min\{-g_n, f, g_n\}$. Prove that $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in \mathbb{R}$
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$. Suppose that g is a non-negative function, that is $g \ge 0$. Let $h = \text{mid}\{-g, f, g\}$. Prove that $|h| \le g$. [That is, prove that $|h(x)| \le g(x)$ for all $x \in \mathbb{R}$.]

4. Recall that given two functions $h, k : \mathbb{R} \to \mathbb{R}$, define $\max\{h, k\} : \mathbb{R} \to \mathbb{R}$ and $\min\{h, k\} : \mathbb{R} \to \mathbb{R}$ by

$$(\max\{h, k\})(x) = \max\{h(x), k(x)\}\$$

and

$$(\min\{h,k\})(x) = \min\{h(x), k(x)\}$$

- (a) If $(\phi_n)_{n=1}^{\infty}$ and $(\psi_n)_{n=1}^{\infty}$ are non-decreasing sequences of step functions prove that the sequence $(\min\{\phi_n, \psi_n\})_{n=1}^{\infty}$ is a non-decreasing sequence of step functions.
- (b) If $(\phi_n)_{n=1}^{\infty}$ and $(\psi_n)_{n=1}^{\infty}$ are non-decreasing sequences of step functions prove that the sequence $(\max\{\phi_n, \psi_n\})_{n=1}^{\infty}$ is a non-decreasing sequence of step functions.
- 5. Recall the definition of $\min\{h, k\}$ and $\max\{h, k\}$ given above.
 - (a) Let f and g be in L^0 . Prove that min $\{f, g\}$ and max $\{f, g\}$ are in L^0 .
 - (b) Let f be in L^1 . Then |f| is in L^1 .
 - (c) Let f and g be in L^1 . Prove that min $\{f, g\}$ and max $\{f, g\}$ are in L^1 .
 - [

Hint for (a): Use the result from the previous exercise. Hint for (b): If f = g - h where $g \in L^0$ and $h \in L^0$ show that $|f| = \max\{g,h\} - \min\{g,h\}$.

Hint for (c): Use the fact that

$$\min\{h,k\} = \frac{1}{2}h + \frac{1}{2}k - \frac{1}{2}|h-k|$$

and

$$max\{h,k\} = \frac{1}{2}h + \frac{1}{2}k + \frac{1}{2}|h-k|$$

]

6. Let $a, b \in \mathbb{R}$ with $b \ge 0$. Prove that

$$\min\{-b, a, b\} = \max\{-b, \min\{a, b\}\} = \begin{cases} -b & \text{if } a < -b \\ a & \text{if } -b \le a \le b \\ b & \text{if } b < a \end{cases}$$

[Hint: Break it into three cases: $a < -b \le b, -b \le a \le b, and -b \le b < a.$]

- 7. (a) Let $a, b \in \mathbb{R}$. Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be sequences of real numbers where $b_n \geq 0$ for all n. Prove that if $a_n \to a$ and $b_n \to b$, then $\min\{-b_n, a_n, b_n\} \to \min\{-b, a, b\}.$
 - (b) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions with $f_n : \mathbb{R} \to \mathbb{R}$. Let $g : \mathbb{R} \to \mathbb{R}$ where g is a non-negative function. Prove that if $f : \mathbb{R} \to \mathbb{R}$ satisfies $\lim_{n \to \infty} f_n(x) = f(x)$ for almost all x, then $\lim_{n \to \infty} \operatorname{mid}\{-g, f_n, g\}(x) = \operatorname{mid}\{-g, f, g\}(x)$ for almost all x.
- 8. Let f and h be measurable functions. Let $\alpha \in \mathbb{R}$. Prove the following.
 - (a) f + h is measurable
 - (b) $\alpha \cdot f$ is measurable.
 - (c) $\min\{f, h\}$ is measurable.
 - (d) $\max\{f, h\}$ is measurable.
 - (e) Let g be a non-negative function in L^1 . Suppose that $|f(x)| \le g(x)$ for almost all x. Prove that f is in L^1 .

9. Let $f : \mathbb{R} \to \mathbb{R}$. Let

 $E = \{ x \in \mathbb{R} \mid f \text{ is discontinuous at } x \}.$

Suppose that E has measure zero. Further suppose that f is bounded on any interval [a, b]. Prove that f is a measurable function.

[Hint: Let $f_n = f \cdot \chi_{[-n,n]}$. Show that $f_n \in L^1$ for all $n \ge 1$. Then show that $f_n \to f$ on all of \mathbb{R} .]