Math 456

Homework # 8 - Irreducible polynomials and the ring $R/I=F[x]/\langle p(x)\rangle$

1. Let F be a field. Let $c \in F$. Then x - c is a divisor of f(x) in F[x] if and only if f(c) = 0.

2. Determine which polynomials are irreducible over $\mathbb{Z}_n[x]$. If one is reducible, keep factoring it until you can't factor any more.

- (a) $x^2 + \overline{1}$ in $\mathbb{Z}_3[x]$.
- (b) $x^2 + \overline{2}$ in $\mathbb{Z}_3[x]$.
- (c) $x^2 + x + \overline{1}$ in $\mathbb{Z}_3[x]$.
- (d) $x^4 + \overline{4}$ in $\mathbb{Z}_5[x]$.
- 3. Determine whether $x^5 5x^3 + 195x + 10$ is irreducible in $\mathbb{Q}[x]$.
- 4. Determine whether $x^2 2$ is irreducible in $\mathbb{Q}[x]$.
- 5. Determine whether $x^{10} 10$ is irreducible in $\mathbb{Q}[x]$.

6. Find a finite field of size 4. List out the elements and how you constructed the field.

7. Find a finite field of size 8. List out the elements and how you constructed the field.