Math 4300 - Homework \# 7

The plane separation axiom and convex sets

1. In the Euclidean plane, let $A=(1,4), B=(-1,1)$. Let $\ell=\overleftrightarrow{A B}$
(a) Draw a picture of the two half planes that are determined by ℓ.
(b) Let $P=(-2,1)$ and $Q=(0,0)$. Determine if P and Q on the same side of ℓ or opposite sides of ℓ.
(c) Let $P=(3,1)$ and $Q=(0,0)$. Determine if P and Q on the same side of ℓ or opposite sides of ℓ.
2. In the Hyperbolic plane, let $A=(1,2), B=(3,4)$. Let $\ell=\overleftrightarrow{A B}$
(a) Draw a picture of the two half planes that are determined by ℓ.
(b) Let $P=(-2,1)$ and $Q=(5,1)$. Determine if P and Q on the same side of ℓ or opposite sides of ℓ.
(c) Let $P=(-2,1)$ and $Q=(10,2)$. Determine if P and Q on the same side of ℓ or opposite sides of ℓ.
3. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry.
(a) Let X and Y be distinct points from \mathscr{P}. Let $\ell=\overleftarrow{X Y}$. Let $f: \ell \rightarrow \mathbb{R}$ be a ruler for ℓ. Prove: If $f(X)<f(Y)$ then

$$
\overline{X Y}=\{D \in \mathscr{P} \mid f(X) \leq f(D) \leq f(Y)\}
$$

Prove that if If $f(Y)<f(X)$ then

$$
\overline{X Y}=\{D \in \mathscr{P} \mid f(Y) \leq f(D) \leq f(X)\}
$$

(b) Let X and Y be distinct points from \mathscr{P}. Let $\ell=\overleftarrow{X Y}$. Let $f: \ell \rightarrow \mathbb{R}$ be a ruler for ℓ. Prove: If $f(X)<f(Y)$ then

$$
\overrightarrow{X Y}=\{C \in \mathscr{P} \mid f(X) \leq f(C)\}
$$

Prove that if If $f(Y)<f(X)$ then

$$
\overrightarrow{X Y}=\{C \in \mathscr{P} \mid f(C) \leq f(X)\}
$$

4. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let $S, T \subseteq \mathscr{P}$ be convex sets. Prove that $S \cap T$ is convex.
5. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A and B be distinct points. Prove that the following sets are convex.
(a) \emptyset, which is the empty set
(b) $\{A\}$, a set with just one point
(c) The set \mathscr{P} of all points in the geometric space
(d) $\overline{A B}$
(e) $\operatorname{int}(\overline{A B})$ where $\operatorname{int}(\overline{A B})=\overline{A B}-\{A, B\}$
(f) $\overleftrightarrow{A B}$
(g) $\overrightarrow{A B}$
(h) $\operatorname{int}(\overrightarrow{A B})$ where $\operatorname{int}(\overrightarrow{A B})=\overrightarrow{A B}-\{A\}$
6. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry satisfying the PSA. Let ℓ be a line from \mathscr{L}. Let P, Q be points in \mathscr{P} where $P \notin \ell$ and $Q \notin \ell$. We have that:
(a) P and Q are on opposite sides of ℓ if and only if $\overline{P Q} \cap \ell \neq \emptyset$.
(b) P and Q are on the same side of ℓ if and only if $\overline{P Q} \cap \ell=\emptyset$.
7. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry satisfying the PSA. Let P, Q, R be points in \mathscr{P} and let ℓ be a line from \mathscr{L}. If P and Q are on opposite sides of ℓ, and Q and R are on opposite sides of ℓ, then P and R are on the same side of ℓ.
8. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry satisfying the PSA. Let P, Q, R be points in \mathscr{P} and let ℓ be a line from \mathscr{L}. If P and Q are on opposite sides of ℓ, and Q and R are on the same side of ℓ, then P and R are on opposite sides of ℓ.
