Math 4300 - Homework # 7

The plane separation axiom and convex sets

- 1. In the Euclidean plane, let A = (1, 4), B = (-1, 1). Let $\ell = \overleftrightarrow{AB}$.
 - (a) Draw a picture of the two half planes that are determined by ℓ .
 - (b) Let P = (-2, 1) and Q = (0, 0). Determine if P and Q on the same side of ℓ or opposite sides of ℓ .
 - (c) Let P = (3, 1) and Q = (0, 0). Determine if P and Q on the same side of ℓ or opposite sides of ℓ .
- 2. In the Hyperbolic plane, let A = (1, 2), B = (3, 4). Let $\ell = \overleftrightarrow{AB}$.
 - (a) Draw a picture of the two half planes that are determined by ℓ .
 - (b) Let P = (-2, 1) and Q = (5, 1). Determine if P and Q on the same side of ℓ or opposite sides of ℓ .
 - (c) Let P = (-2, 1) and Q = (10, 2). Determine if P and Q on the same side of ℓ or opposite sides of ℓ .
- 3. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry.
 - (a) Let X and Y be distinct points from \mathscr{P} . Let $\ell = \overleftarrow{XY}$. Let $f: \ell \to \mathbb{R}$ be a ruler for ℓ . Prove: If f(X) < f(Y) then

$$\overline{XY} = \{ D \in \mathscr{P} \mid f(X) \le f(D) \le f(Y) \}$$

Prove that if If f(Y) < f(X) then

$$\overline{XY} = \{ D \in \mathscr{P} \mid f(Y) \le f(D) \le f(X) \}$$

(b) Let X and Y be distinct points from \mathscr{P} . Let $\ell = \overleftarrow{XY}$. Let $f: \ell \to \mathbb{R}$ be a ruler for ℓ . Prove: If f(X) < f(Y) then

$$\overrightarrow{XY} = \{C \in \mathscr{P} \mid f(X) \le f(C)\}$$

Prove that if If f(Y) < f(X) then

$$\overrightarrow{XY} = \{C \in \mathscr{P} \mid f(C) \le f(X)\}$$

- 4. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let $S, T \subseteq \mathscr{P}$ be convex sets. Prove that $S \cap T$ is convex.
- 5. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A and B be distinct points. Prove that the following sets are convex.
 - (a) \emptyset , which is the empty set
 - (b) $\{A\}$, a set with just one point
 - (c) The set \mathscr{P} of all points in the geometric space
 - (d) \overline{AB}
 - (e) $\operatorname{int}(\overline{AB})$ where $\operatorname{int}(\overline{AB}) = \overline{AB} \{A, B\}$
 - (f) \overrightarrow{AB}
 - (g) \overrightarrow{AB}
 - (h) $\operatorname{int}(\overrightarrow{AB})$ where $\operatorname{int}(\overrightarrow{AB}) = \overrightarrow{AB} \{A\}$
- 6. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry satisfying the PSA. Let ℓ be a line from \mathscr{L} . Let P, Q be points in \mathscr{P} where $P \notin \ell$ and $Q \notin \ell$. We have that:
 - (a) P and Q are on opposite sides of ℓ if and only if $\overline{PQ} \cap \ell \neq \emptyset$.
 - (b) P and Q are on the same side of ℓ if and only if $\overline{PQ} \cap \ell = \emptyset$.

- Let (𝒫, 𝒫, d) be a metric geometry satisfying the PSA. Let P, Q, R be points in 𝒫 and let ℓ be a line from 𝒫. If P and Q are on opposite sides of ℓ, and Q and R are on opposite sides of ℓ, then P and R are on the same side of ℓ.
- Let (P, L, d) be a metric geometry satisfying the PSA. Let P, Q, R be points in P and let l be a line from L. If P and Q are on opposite sides of l, and Q and R are on the same side of l, then P and R are on opposite sides of l.