Math 2550
 HW 7 - Part 2
 Spanning, Linear Independence, Bases

1. In HW 6 you showed that the following are subspaces of $V=\mathbb{R}^{3}$ over $F=\mathbb{R}$. Find a basis for each subspace and state the dimension of the subspace.
(a) $W=\{\langle a, 0,0\rangle \mid a \in \mathbb{R}\}$
(b) $W=\{\langle a, b, c\rangle \mid b=a+c$ where $a, b, c \in \mathbb{R}\}$
2. One can show that the subset

$$
W=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a+b+c=0 \text { where } a, b, c, d \in \mathbb{R}\right\}
$$

is a subspace of $V=M_{2,2}$ over $F=\mathbb{R}$. You don't need to show this. Find a basis for W and state the dimension of W.
3. In HW 6 you showed that
$W=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \mid a_{0}+a_{1}+a_{2}+a_{3}=0\right.$ where $\left.a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$
is a subspace of $V=P_{3}$ over $F=\mathbb{R}$. Find a basis for W and state the dimension of W.

