Math 2550

HW 7 - Part 1

Spanning, Linear Independence, Bases

- 1. (a) Consider the vector space $V = \mathbb{R}^2$ with field $F = \mathbb{R}$. List five vectors that lie in the span of $\langle 0, 1 \rangle$, $\langle 1, 1 \rangle$, $\langle -3, 2 \rangle$.
 - (b) Consider the vector space $V = \mathbb{R}^3$ with field $F = \mathbb{R}$. List five vectors that lie in span($\{\langle 0, -2, 2 \rangle, \langle 1, 3, -1 \rangle\}$).
 - (c) Consider the vector space $V = P_1$ with field $F = \mathbb{R}$. List five vectors that lie in the span($\{2, 1 + x\}$).
 - (d) Consider the vector space $V = P_2$ with field $F = \mathbb{R}$. List five vectors that lie in the span of -1 2x, x^2 , $1 + x + x^2$.
- 2. Consider the vector space $V = \mathbb{R}^3$ with field $F = \mathbb{R}$. Let $\vec{u} = \langle 0, -2, 2 \rangle$ and $\vec{v} = \langle 1, 3, -1 \rangle$.

Which of the following vectors lie in the span of \vec{u} and \vec{v} ? If a vector does lie in the span then express it as a linear combination of \vec{u} and \vec{v} .

- (a) (2, 2, 2)
- (b) (3, 1, 5)
- (c) (0, 4, 5)
- (d) (0,0,0)
- 3. Consider the vector space $V = P_3$ with field $F = \mathbb{R}$. Let $\vec{p_1} = 2 + x + 4x^2$, $\vec{p_2} = 1 x + 3x^2$, and $\vec{p_3} = 1 + x^3$.

Which of the following vectors lie in span($\{\vec{p_1}, \vec{p_2}, \vec{p_3}\}$)? If a vector does lie in the span then express it as a linear combination of $\vec{p_1}$, $\vec{p_2}$, $\vec{p_3}$.

- (a) $3 + 2x + x^2 + 2x^3$
- (b) 1 + x
- (c) 0
- (d) $4 x + 10x^2$

- 4. Determine whether or not the following vectors span \mathbb{R}^3 .
 - (a) $\vec{v_1} = \langle 2, 2, 2 \rangle, \ \vec{v_2} = \langle 4, 1, 2 \rangle, \ \vec{v_3} = \langle 0, 1, 1 \rangle$
 - (b) $\vec{v_1} = \langle 2, -1, 3 \rangle, \vec{v_2} = \langle 4, 1, 2 \rangle, \vec{v_3} = \langle 8, -1, 8 \rangle$
- 5. Which of the sets of vectors from problem 4 form a basis for \mathbb{R}^3 ?
- 6. Are the following vectors linearly independent or linearly dependent in the respective vector spaces?
 - (a) $\vec{u_1} = \langle 3, -1 \rangle$, $\vec{u_2} = \langle 4, 5 \rangle$, $\vec{u_3} = \langle -4, 7 \rangle$ in $V = \mathbb{R}^2$ with $F = \mathbb{R}$.
 - (b) $\vec{v_1} = \langle -3, 0, 4 \rangle$, $\vec{v_2} = \langle 5, -1, 2 \rangle$, $\vec{v_3} = \langle 1, 1, 3 \rangle$ in $V = \mathbb{R}^3$ with $F = \mathbb{R}$.
 - (c) $\vec{p_1} = 3 2x + x^2$, $\vec{p_2} = 1 + x + x^2$, $\vec{p_3} = 6 4x + 2x^2$ in $V = P_2$ with $F = \mathbb{R}$.
- 7. Determine which of the following sets is a basis for $V = \mathbb{R}^3$ over the field $F = \mathbb{R}$.
 - (a) $\vec{v_1} = \langle 4, -1, 2 \rangle, \ \vec{v_2} = \langle -4, 10, 2 \rangle$
 - (b) $\vec{v_1} = \langle -3, 0, 4 \rangle, \ \vec{v_2} = \langle 5, -1, 2 \rangle, \ \vec{v_3} = \langle 1, 1, 3 \rangle$
 - (c) $\vec{v_1} = \langle -2, 0, 1 \rangle$, $\vec{v_2} = \langle 3, 2, 5 \rangle$, $\vec{v_3} = \langle 6, -1, 1 \rangle$, $\vec{v_4} = \langle 7, 0, -2 \rangle$
- 8. Determine which of the following sets is a basis for $V = P_2$ over the field $F = \mathbb{R}$.
 - (a) $\vec{p_1} = 1$, $\vec{p_2} = 1 + x$, $\vec{p_3} = 1 + x + x^2$
 - (b) $\vec{p_1} = 6 x^2$, $\vec{p_2} = 1 + x + 4x^2$, $\vec{p_3} = 8 + 2x + 7x^2$
- 9. (a) Show that the two vectors $\{\langle 1, 4 \rangle, \langle 3, -2 \rangle\}$ form a basis for \mathbb{R}^2 .
 - (b) Find the coordinates of $\langle -7, 14 \rangle$ with respect to the ordered basis $\beta = [\langle 1, 4 \rangle, \langle 3, -2 \rangle].$
 - (c) Find the coordinates of $\langle 3, -12 \rangle$ with respect to the ordered basis $\beta = [\langle 1, 4 \rangle, \langle 3, -2 \rangle].$
- 10. (a) Show that the vectors $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$ form a basis for $M_{2,2}$.

- (b) Find the coordinates of $\begin{pmatrix} 1 & -2 \\ 0 & -3 \end{pmatrix}$ with respect to the ordered basis $\beta = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
- (c) Find the coordinates of $\begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix}$ with respect to the ordered basis $\beta = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
- 11. In problem 8a you showed that $1, 1 + x, 1 + x + x^2$ is a basis for P_2 .
 - (a) Find the coordinates of $1 x + 2x^2$ with respect to the ordered basis $\beta = [1, 1 + x, 1 + x + x^2]$.
 - (b) Find the coordinates of x with respect to the ordered basis $\beta = [1, 1+x, 1+x+x^2]$.
- 12. Show that the vector space $V = M_{2,2}$ of all 2×2 matrices over the field $F = \mathbb{R}$ has dimension 4.
- 13. Show that the vector space $V=P_n$ over the field $F=\mathbb{R}$ has dimension n+1.