Math 5800
 Homework \# 7
 The Lebesgue integral

1. (a) If f is a step function, then $f \in L^{0}$.
(b) If f is a step function, then $f \in L^{1}$.
2. Let

$$
f=\chi_{\mathbb{R}}
$$

(a) Show that $f \notin L^{1}$.
(b) Show that $f \in L^{1}(I)$ for any finite interval I.
[Hint for (a): Define

$$
g_{k}(x)= \begin{cases}1 & \text { if } x \in[-k, k] \\ 0 & \text { if } x \notin[-k, k]\end{cases}
$$

Show that g_{k} is in L^{1} and that $\int g_{k}=2 k$ for all $k \geq 1$. Show that $g_{k}(x) \leq f(x)$ for all x. Conclude that if $f \in L^{1}$ then $\int g_{k} \leq \int f$ for all $k \geq 1$. This will lead to a contradiction.]
3. Let $f, g \in L^{0}$ and $\alpha, \beta \in \mathbb{R}$ with $\alpha \geq 0$ and $\beta \geq 0$.

- Prove that $\alpha f+\beta g \in L^{0}$.
- Prove that $\int(\alpha f+\beta g)=\alpha \int f+\beta \int g$.

4. Let $f \in L^{0}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$. Suppose also that $f(x)=g(x)$ for almost all x in \mathbb{R}.

- Prove that $g \in L^{0}$.
- Prove that $\int g=\int f$.

5. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and that $\left(\phi_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions that converges almost everywhere to f. Suppose also that there exists a real number $M>0$ where the sequence $\int \phi_{n} \leq M$ for all $n \geq 1$.
(a) Prove that $f \in L^{0}$.
(b) Prove that $\int f=\lim _{n \rightarrow \infty} \int \phi_{n}$.
(c) Prove that $\int f \leq M$.
6. Suppose that $a \leq c \leq b$. If $f \in L^{1}([a, c])$ and $f \in L^{1}([c, b])$, then $f \in L^{1}([a, b])$ and

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

[Hint: Show that

$$
f \cdot \chi_{[a, b]}=f \cdot \chi_{[a, c]}+f \cdot \chi_{[c, b]}
$$

almost everywhere
7. Suppose that f is integrable on the interval $[a, b]$ and that there are real numbers m, M such that

$$
m \leq f(x) \leq M
$$

for all $x \in[a, b]$, then

$$
m(b-a) \leq \int_{a}^{b} f \leq M(b-a)
$$

[Hint: Show and use this: $m \cdot \chi_{[a, b]} \leq f \cdot \chi_{[a, b]} \leq M \cdot \chi_{[a, b]} \quad$]
8. (Standard construction problem) Let

$$
f(x)=\left\{\begin{array}{cc}
x+1 & \text { if } x \in[-1,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

Consider the standard construction $\left(\gamma_{n}\right)_{n=1}^{\infty}$ for f on $[-1,1]$. In the homework on sequences of functions and the standard construction, we showed that γ_{n} converges pointwise to f on all of \mathbb{R}.
(a) Use the formula

$$
1+2+\cdots+m=\sum_{i=1}^{m} i=\frac{m(m+1)}{2}
$$

to show that

$$
\int \gamma_{n}=\frac{2^{n}-1}{2^{n-1}}
$$

(b) Show that $f \in L^{1}$ and that $\int f=2$.
(c) Conclude that $g: \mathbb{R} \rightarrow \mathbb{R}$ with $g(x)=x+1$ satisfies $g \in L^{1}([-1,1])$ and $\int_{-1}^{1}(x+1) d x=2$.
9. (Standard construction problem) Let

$$
f(x)=\left\{\begin{array}{cl}
x^{2} & \text { if } x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

Consider the standard construction $\left(\gamma_{n}\right)_{n=1}^{\infty}$ for f on $[0,1]$. In the homework on sequences of functions and the standard construction, we showed that γ_{n} converges pointwise to f on all of \mathbb{R}.
(a) Use the formula

$$
1+2+\cdots+m^{2}=\sum_{i=1}^{m} i^{2}=\frac{m(m+1)(2 m+1)}{6}
$$

to show that

$$
\int \gamma_{n}=\frac{2 \cdot 2^{2 n}-3 \cdot 2^{n}+1}{6 \cdot 2^{2 n}}
$$

(b) Show that $f \in L^{1}$ and that $\int f=1 / 3$.
(c) Conclude that $g: \mathbb{R} \rightarrow \mathbb{R}$ with $g(x)=x^{2}$ satisfies $g \in L^{1}([0,1])$ and $\int_{0}^{1} x^{2} d x=1 / 3$.
10. Let

$$
g(x)=\left\{\begin{array}{cc}
0 & \text { if } x \text { is rational } \\
1 & \text { if } x \text { is irrational }
\end{array}\right.
$$

Prove that $g \in L^{1}(I)$ for any bounded interval I and that

$$
\int_{I} g=\ell(I)
$$

11. Recall the following example from class. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(x)=\left\{\begin{array}{lc}
1 & \text { if } x \in[0,1] \text { and } x \text { is rational } \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $\left\{r_{1}, r_{2}, r_{3}, r_{4}, \ldots\right\}$ be an enumeration of the rational numbers that lie inside of $[0,1]$. [For example, it could be something like $\{1 / 2,0,3 / 10,51 / 541, \ldots\}$ but it doesn't have to be this.]

Let $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g_{n}(x)=\left\{\begin{array}{cc}
1 & \text { if } x \in\left\{r_{1}, r_{2}, \ldots, r_{n}\right\} \\
0 & \text { otherwise }
\end{array}\right.
$$

Prove the following:
(a) Draw a picture of g_{1}, g_{2}, g_{3} for a general choice of r_{1}, r_{2}, r_{3}.
(b) $\left(g_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions
(c) $g_{n} \rightarrow g$ pointwise on all of \mathbb{R}
(d) $\int g_{n}=0$ for all $n \geq 1$
(e) $g \in L^{0}$ and $\int g=0$

This problem was used in a lemma that was proved in class.
12. Let $T_{1}, T_{2}, \ldots, T_{s}$ be disjoint bounded intervals. If there exists $a<b$ where $\bigcup_{i=1}^{s} T_{i} \subseteq[a, b]$, then $\sum_{i=1}^{s} \ell\left(T_{i}\right) \leq b-a$.

