Math 5800 Homework # 7 The Lebesgue integral

1. (a) If f is a step function, then $f \in L^0$. (b) If f is a step function, then $f \in L^1$.

2. Let

$$f = \chi_{\mathbb{R}}$$

- (a) Show that $f \notin L^1$.
- (b) Show that $f \in L^1(I)$ for any finite interval I.

[Hint for (a): Define

$$g_k(x) = \begin{cases} 1 & \text{if } x \in [-k,k] \\ 0 & \text{if } x \notin [-k,k] \end{cases}$$

Show that g_k is in L^1 and that $\int g_k = 2k$ for all $k \ge 1$. Show that $g_k(x) \le f(x)$ for all x. Conclude that if $f \in L^1$ then $\int g_k \le \int f$ for all $k \ge 1$. This will lead to a contradiction.]

- 3. Let $f, g \in L^0$ and $\alpha, \beta \in \mathbb{R}$ with $\alpha \ge 0$ and $\beta \ge 0$.
 - Prove that $\alpha f + \beta g \in L^0$.
 - Prove that $\int (\alpha f + \beta g) = \alpha \int f + \beta \int g$.
- 4. Let $f \in L^0$ and $g : \mathbb{R} \to \mathbb{R}$. Suppose also that f(x) = g(x) for almost all x in \mathbb{R} .
 - Prove that $g \in L^0$.
 - Prove that $\int g = \int f$.

- 5. Suppose that $f : \mathbb{R} \to \mathbb{R}$ and that $(\phi_n)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions that converges almost everywhere to f. Suppose also that there exists a real number M > 0 where the sequence $\int \phi_n \leq M$ for all $n \geq 1$.
 - (a) Prove that $f \in L^0$.

(b) Prove that
$$\int f = \lim_{n \to \infty} \int \phi_n$$

- (c) Prove that $\int f \leq M$.
- 6. Suppose that $a \leq c \leq b$. If $f \in L^1([a,c])$ and $f \in L^1([c,b])$, then $f \in L^1([a,b])$ and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

[Hint: Show that

$$f \cdot \chi_{\scriptscriptstyle [a,b]} = f \cdot \chi_{\scriptscriptstyle [a,c]} + f \cdot \chi_{\scriptscriptstyle [c,b]}$$

almost everywhere

]

7. Suppose that f is integrable on the interval [a, b] and that there are real numbers m, M such that

$$m \le f(x) \le M$$

for all $x \in [a, b]$, then

$$m(b-a) \le \int_{a}^{b} f \le M(b-a)$$

[Hint: Show and use this: $m \cdot \chi_{{}_{[a,b]}} \leq f \cdot \chi_{{}_{[a,b]}} \leq M \cdot \chi_{{}_{[a,b]}}$]

8. (Standard construction problem) Let

$$f(x) = \begin{cases} x+1 & \text{if } x \in [-1,1] \\ 0 & \text{otherwise} \end{cases}$$

Consider the standard construction $(\gamma_n)_{n=1}^{\infty}$ for f on [-1,1]. In the homework on sequences of functions and the standard construction, we showed that γ_n converges pointwise to f on all of \mathbb{R} .

(a) Use the formula

$$1 + 2 + \dots + m = \sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

to show that

$$\int \gamma_n = \frac{2^n - 1}{2^{n-1}}$$

- (b) Show that $f \in L^1$ and that $\int f = 2$.
- (c) Conclude that $g : \mathbb{R} \to \mathbb{R}$ with g(x) = x+1 satisfies $g \in L^1([-1,1])$ and $\int_{-1}^1 (x+1)dx = 2$.
- 9. (Standard construction problem) Let

$$f(x) = \begin{cases} x^2 & \text{if } x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

Consider the standard construction $(\gamma_n)_{n=1}^{\infty}$ for f on [0,1]. In the homework on sequences of functions and the standard construction, we showed that γ_n converges pointwise to f on all of \mathbb{R} .

(a) Use the formula

$$1 + 2 + \dots + m^2 = \sum_{i=1}^m i^2 = \frac{m(m+1)(2m+1)}{6}$$

to show that

$$\int \gamma_n = \frac{2 \cdot 2^{2n} - 3 \cdot 2^n + 1}{6 \cdot 2^{2n}}$$

(b) Show that $f \in L^1$ and that $\int f = 1/3$.

g

(c) Conclude that $g : \mathbb{R} \to \mathbb{R}$ with $g(x) = x^2$ satisfies $g \in L^1([0,1])$ and $\int_0^1 x^2 dx = 1/3$.

10. Let

$$(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

Prove that $g \in L^1(I)$ for any bounded interval I and that

$$\int_{I} g = \ell(I)$$

11. Recall the following example from class. Let $g: \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) = \begin{cases} 1 & \text{if } x \in [0,1] \text{ and } x \text{ is rational} \\ 0 & \text{otherwise} \end{cases}$$

Let $\{r_1, r_2, r_3, r_4, \ldots\}$ be an enumeration of the rational numbers that lie inside of [0, 1]. [For example, it could be something like $\{1/2, 0, 3/10, 51/541, \ldots\}$ but it doesn't have to be this.]

Let $g_n : \mathbb{R} \to \mathbb{R}$ be defined by

$$g_n(x) = \begin{cases} 1 & \text{if } x \in \{r_1, r_2, \dots, r_n\} \\ 0 & \text{otherwise} \end{cases}$$

Prove the following:

- (a) Draw a picture of g_1, g_2, g_3 for a general choice of r_1, r_2, r_3 .
- (b) $(g_n)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions
- (c) $g_n \to g$ pointwise on all of \mathbb{R}
- (d) $\int g_n = 0$ for all $n \ge 1$
- (e) $g \in L^0$ and $\int g = 0$

This problem was used in a lemma that was proved in class.

12. Let T_1, T_2, \ldots, T_s be disjoint bounded intervals. If there exists a < bwhere $\bigcup_{i=1}^{s} T_i \subseteq [a, b]$, then $\sum_{i=1}^{s} \ell(T_i) \leq b - a$.