Math 465 - Homework # 7 Uniform Continuity

- 1. (a) Prove that $f(x) = \frac{1}{x}$ is uniformly continuous on $[1, \infty)$.
 - (b) Prove that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0, 1).
 - (c) Prove that $f(x) = \frac{1}{1+x^2}$ is uniformly continuous on all of \mathbb{R} .
- 2. Show that if $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ are both uniformly continuous on D then f + g is uniformly continuous on D.
- 3. Suppose that $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ are both uniformly continuous on D. Prove that if f and g are both bounded on D, then $f \cdot g$ is uniformly continuous on D.
- 4. Suppose that $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are both uniformly continuous on \mathbb{R} . Prove that $f \circ g$ is uniformly continuous on \mathbb{R} .
- 5. Suppose that $f: D \to \mathbb{R}$ is uniformly continuous on D and that (x_n) is a Cauchy sequence with $x_n \in D$ for all n. Prove that $(f(x_n))$ is a Cauchy sequence.