Math 446 - Homework \# 6 Solutions

1. Do the following calculations in $\mathbb{Z}[i]$.
(a) $(2+10 i)+(-3+15 i)$

Solution: $-1+25 i$
(b) $(-13+i)-(2-3 i)$

Solution: $-15+4 i$
(c) $(1+3 i)(2-10 i)$

Solution: $2-10 i+6 i-30 i^{2}=2-4 i+30=32-4 i$
(d) $\frac{1+i}{i}$

Solution: $\frac{1+i}{i} \cdot \frac{-i}{-i}=\frac{-i-i^{2}}{-i^{2}}=\frac{1-i}{1}=1-i$
(e) $\frac{2-3 i}{1-2 i}$

Solution: $\frac{2-3 i}{1-2 i} \cdot \frac{1+2 i}{1+2 i}=\frac{2+4 i-3 i-6 i^{2}}{1+2 i-2 i-4 i^{2}}=\frac{8+i}{5}=\frac{8}{5}+\frac{1}{5} i$
2. Calculate the norms of the following elements of $\mathbb{Z}[i]$.
(a) i

Solution: $N(i)=N(0+1 \cdot i)=0^{2}+1^{2}=1$.
(b) $2-i$

Solution: $N(2-i)=N(2-1 \cdot i)=2^{2}+(-1)^{2}=5$.
(c) 15

Solution: $N(15)=N(15+0 \cdot i)=15^{2}+0^{2}=225$.
(d) $15+102 i$

Solution: $N(15+102 i)=15^{2}+102^{2}=225+10,404=10,629$.
3. List all the associates of $-1+2 i$.

Solution:

$$
\begin{aligned}
& -1+2 i \\
& -(-1+2 i)=1-2 i \\
& i \cdot(-1+2 i)=-2-i \\
& (-i) \cdot(-1+2 i)=2+i
\end{aligned}
$$

4. List all the associates of 10 .

Solution: 10, -10, 10i, - $10 i$.
5. Carry out the division algorithm for z and w. That is, find q and r in $\mathbb{Z}[i]$ with $z=w q+r$.
(a) $z=-8-i$ and $w=3+2 i$

Solution: $z / w=\frac{-8-i}{3+2 i} \cdot \frac{3-2 i}{3-2 i}=\frac{-24+16 i-3 i-2}{9+4}=-2+i$.
Hence, $q=-2+i$ and $r=0$ since w divides z.
(b) $z=5+i$ and $w=-1-2 i$

Solution: $\quad z / w=\frac{5+i}{-1-2 i} \cdot \frac{-1+2 i}{-1+2 i}=\frac{-5+10 i-i+2 i^{2}}{1+4}=$ $\frac{-7}{5}+\frac{9}{5} \cdot i=-1.4+1.8 i$. Let, $q=-1+2 i$. Then $r=z-w q=5+i-$ $(-1-2 i)(-1+2 i)=i$. Note that $N(r)=N(i)=1<5=N(w)$.
(c) $z=33+5 i$ and $w=10-2 i$

Solution: $z / w=\frac{33+5 i}{10-2 i}=\frac{40}{13}+\frac{29}{26} \cdot i \approx 3.08+1.12 i$. Let,
$q=3+i$. Then $r=z-w q=33+5 i-(10-2 i)(3+i)=1+i$. Note that $N(r)=N(1+i)=1^{2}+1^{2}=2<104=N(w)$.
6. Determine whether or not $2+3 i$ divides $10-11 i$ in $\mathbb{Z}[i]$.

Solution: Yes, $\frac{10-11 i}{2+3 i}=-1-4 i \in \mathbb{Z}[i]$.
7. Determine whether or not $3-2 i$ divides $10+i$ in $\mathbb{Z}[i]$.

Solution: No, $\frac{10+i}{3-2 i}=\frac{28}{13}+\frac{23}{13} \cdot i \notin \mathbb{Z}[i]$.
8. Determine whether or not $2+i$ is prime in $\mathbb{Z}[i]$. Find all the divisors of $2+i$.

Solution: Since $N(2+i)=5$ and 5 is prime in \mathbb{Z}, by exercise 18 , we know that $2+i$ is prime in $\mathbb{Z}[i]$. Hence the only divisors of $2+i$ are the units of $\mathbb{Z}[i]$ and the associates of $2+i$, which are $1,-1, i,-i$, $2+i=(1)(2+i),-2-i=(-1)(2+i),-1+2 i=(i)(2+i)$, and $1-2 i=(-i)(2+i)$.
9. Let w and v be Gaussian integers with $w \neq 0$ and $v \neq 0$. If w divides v and $N(w)=N(v)$, then w is an associate of v.

Solution: Since w divides v we have that $v=w z$ where z is a Gaussian integer. The associates of v are $1 \cdot v,(-1) \cdot v, i \cdot v$, and $(-i) \cdot v$. Thus our goal is to show that $w=u v$ where u is a unit. Applying the norm to the equation $v=w z$ we get that $N(v)=N(w z)=N(w) N(z)$. Since $w \neq 0$ we know that $N(w) \neq 0$. Dividing $N(v)=N(w) N(z)$ by $N(w)$, and using the fact that $N(v)=N(w)$ we get that $1=N(z)$. Thus z is a unit. So $z=1,-1, i$, or,$-i$. Since $1^{-1}=1,(-1)^{-1}=-1, i^{-1}=$ $-i$, and $(-i)^{-1}=i$ we have that $z^{-1}=1,-1,-i$, or i. Thus z^{-1} is a unit. Multiplying $v=w z$ by z^{-1} we get that $w=z^{-1} v$ Thus w is an associate of v.
10. Can there exist Gaussian integers z and w where $N(z)$ divides $N(w)$, but z does not divide w ? Try to find some cases that are non-trivial, ie where $1<N(z)<N(w)$. [Hint: You might need to write a computer program.]
Solution: I used a Mathematica program to find these examples.
Let $z=3+i$ and $w=4+2 i$. Then $N(z)=3^{2}+1^{2}=10$ and $N(w)=4^{2}+2^{2}=20$. So $N(z) \mid N(w)$. However,

$$
\frac{4+2 i}{3+i}=\frac{(4+2 i)(3-i)}{(3+i)(3-i)}=\frac{7}{5}+\frac{1}{5} \cdot i \notin \mathbb{Z}[i]
$$

Therefore, z does not divide w.
Here's another example. Let $z=1+2 i$ and $w=-3+i$. Then $N(z)=1^{2}+2^{2}=5$ and $N(w)=(-3)^{2}+1^{2}=10$. So $N(z) \mid N(w)$. However,

$$
\frac{-3+i}{1+2 i}=\frac{(-3+i)(1-2 i)}{(1+2 i)(1-2 i)}=\frac{-1}{5}+\frac{7}{5} \cdot i \notin \mathbb{Z}[i]
$$

Therefore, z does not divide w.
What have we learned from this exercise?. Suppose that we want to find the divisors of $w=-3+i$ for example. We say, ok, if z divides w then $w=z v$ and so $10=N(w)=N(z) N(v)$. So, $N(z)$ divides 10 . So, $N(z)$ is either $1,2,5$, or 10 . Then we look for say elements of norm 5 and we find one. It is $z=1+2 i$. Then we say, ok, $z=1+2 i$ is a divisor
of w. This is wrong. When solving these norm equations, we only find *possible* divisors of w. We must actually check that we have a divisor by trying to divide it into w. The only exceptions to this rule are when you find the elements with $N(z)=1$ and $N(z)=N(w)=10$. These are the units, and by exercise 9 , the associates of w. These never need to be checked because we know from class that they always divide w.
11. Determine whether or not 2 is prime in $\mathbb{Z}[i]$. Find all the divisors of 2 .

Solution: Note that $N(2)=4$. Suppose that $w \in \mathbb{Z}[i]$ is a divisor of 2 , then $2=z w$ where $z \in \mathbb{Z}[i]$. Hence $4=N(2)=N(z w)=N(z) N(w)$. Since $N(z)$ and $N(w)$ are positive integers, we see that $N(w)$ divides 4 in \mathbb{Z}. Hence $N(w)$ can be 1,2 , or 4 .
We first deal with the trivial cases of $N(w)$ equal to 1 or 4 . Then we do the $N(w)$ equal to 2 case.
Case 1: If $N(w)=1$, then w is a unit, so w must be $1,-1, i$, or $-i$. All of these Gaussian integers divide 2 because every unit divides every Gaussian integer.
Case 2: Suppose that $N(w)=4$. By Exercise 9, since $w \mid 2$ and $N(w)=$ $4=N(2)$, we must have that w is an associate of 2 , that is w is one of $2,-2,2 i$, and $-2 i$. Each of these is a divisor of 2 since the associates of a Gaussian integer g always divide g.
Case 3: Suppose that $w=a+b i \in \mathbb{Z}[i]$. If $N(w)=2$, then $a^{2}+b^{2}=2$. The only solutions to this equation with a and b integers are $(a, b)=$ $(\pm 1, \pm 1)$. This gives us the solutions $1+i,-1+i, 1-i$ and $-1-i$. By exercise 10 , we must be careful here and verify that these all actually divide 2 . We do this below:

$$
\begin{aligned}
\frac{2}{1+i} & =1-i \in \mathbb{Z}[i] \\
\frac{2}{-1+i} & =-1-i \in \mathbb{Z}[i] \\
\frac{2}{1-i} & =1+i \in \mathbb{Z}[i] \\
\frac{2}{-1-i} & =-1+i \in \mathbb{Z}[i]
\end{aligned}
$$

Hence the divisors of 2 are $1,-1, i,-i, 1+i,-1+i, 1-i,-1-i$,
$2,-2,2 i$, and $-2 i$. Since 2 has divisors other than its associates and units, we have that 2 is not prime.
12. Determine whether or not 13 is prime in $\mathbb{Z}[i]$. Find all the divisors of 13.

Solution: Note that $N(13)=13^{2}=169$. Suppose that $w \in \mathbb{Z}[i]$ is a divisor of 13 , then $13=z w$ where $z \in \mathbb{Z}[i]$. Hence $169=N(13)=$ $N(z w)=N(z) N(w)$. Since $N(z)$ and $N(w)$ are positive integers, we see that $N(w)$ divides 169 in \mathbb{Z}. Hence $N(w)$ can be 1 , 13 , or 169 .
We first deal with the trivial cases of $N(w)$ equal to 1 or 169 . Then we do the $N(w)$ equal to 13 case.
Case 1: If $N(w)=1$, then w is a unit, so w must be $1,-1, i$, or $-i$. All of these Gaussian integers divide 13 because every unit divides every Gaussian integer.
Case 2: Suppose that $N(w)=169$. By Exercise 9, since $w \mid 13$ and $N(w)=169=N(13)$, we must have that w is an associate of 13 , that is w is one of $13,-13,13 i$, and $-13 i$. Each of these is a divisor of 13 since the associates of a Gaussian integer g always divide g.
Case 3: Suppose that $w=a+b i \in \mathbb{Z}[i]$. If $N(w)=13$, then $a^{2}+b^{2}=13$. The only solutions to this equation with a and b integers are $(a, b)=$ $(\pm 2, \pm 3)$ and $(a, b)=(\pm 3, \pm 2)$. This gives us the solutions $2+3 i$, $2-3 i,-2+3 i,-2-3 i, 3+2 i, 3-2 i,-3+2 i,-3-2 i$. By exercise 10 , we must be careful here and verify that these all actually divide 13 .

We do this below:

$$
\begin{aligned}
\frac{13}{2+3 i} & =2-3 i \in \mathbb{Z}[i] \\
\frac{13}{2-3 i} & =2+3 i \in \mathbb{Z}[i] \\
\frac{13}{-2+3 i} & =-2-3 i \in \mathbb{Z}[i] \\
\frac{13}{-2-3 i} & =-2+3 i \in \mathbb{Z}[i] \\
\frac{13}{3+2 i} & =3-2 i \in \mathbb{Z}[i] \\
\frac{13}{3-2 i} & =3+2 i \in \mathbb{Z}[i] \\
\frac{13}{-3+2 i} & =-3-2 i \in \mathbb{Z}[i] \\
\frac{13}{-3-2 i} & =-3+2 i \in \mathbb{Z}[i]
\end{aligned}
$$

Hence the divisors of 13 are $1,-1, i,-i, 2+3 i,-2+3 i, 2-3 i,-2-3 i$, $3+2 i,-3+2 i, 3-2 i,-3-2 i, 13,-13,13 i$, and $-13 i$.
Since 13 has divisors other than its associates and units, we have that 13 is not prime.
13. Let z be a Gaussian integer. Suppose that z is not prime in $\mathbb{Z}[i]$. Suppose further that $z \neq 0$ and z is not a unit. Then there exist Gaussian integers w and v where
(a) $z=w v$
(b) w is not a unit and w is not an associate of z
(c) v is not a unit and v is not an associate of z

That is, z factors non-trivially.
Solution: Suppose that z is not prime and $z \neq 0$ and z is not a unit. Since z is not prime and not a unit, there exists a Gaussian integer w that divides z, where w is not a unit and w is not an associate of z. Therefore, $z=w v$ where v is a Gaussian integer. The only thing left to show is that v is not a unit and not an associate of z.

Suppose v is a unit. Then $N(v)=1$. So $N(z)=N(w v)=N(w) N(v)=$ $N(w) \cdot 1=N(w)$. Thus w divides z and $N(w)=N(z)$. By exercise 9, this implies that w is an associate of z, which can't happen.
Suppose that v is an associate of z. Then $v=u z$ where u is a unit. This implies that $N(v)=N(u z)=N(u) N(z)=1 \cdot N(z)=N(z)$. Combining this with $N(z)=N(w) N(v)$ gives $N(v)=N(z)=N(w) N(v)$. Cancelling off the $N(v)$ term gives $N(w)=1$. This implies that w is a unit, which can't happen.
Hence v is not a unit, and v is not an associate of z.
14. Let p be an odd prime in \mathbb{Z} with $p \equiv 1(\bmod 4)$. Prove that p is not prime in $\mathbb{Z}[i]$.
Solution: Since $p \equiv 1(\bmod 4)$, we know from class that there exist integers a and b with $p=a^{2}+b^{2}$. Thus $p=(a+b i)(a-b i)=w z$ where $w=a+b i$ and $z=a-b i$. Let's show that w is not a unit and is not an associate of p.
Note that a is non-zero, since if it was, then $p=b^{2}$. This can't happen since p is prime. Similarly, b is non-zero. Hence $N(w)=N(a+b i)=$ $a^{2}+b^{2} \geq 1+1=2$. So w is not a unit. Similarly, $N(z)=N(a-b i)=$ $a^{2}+(-b)^{2} \geq 1+1=2$. So z is not a unit.
Let's now rule out the case that w is an associate of p. Suppose w is an associate of p. Then $w=u p$ where u is a unit. Thus, $N(w)=$ $N(u) N(p)=1 \cdot p^{2}=p^{2}$. We also know from the equation $p=w z$ that $p^{2}=N(p)=N(w) N(z)$. Thus, $N(w)=p^{2}=N(w) N(z)$. So $1=N(z)$ and hence z is a unit. But this is contrary to what we know from above. Hence w is not an associate of p.
Therefore, we have shown that p has a divisor w that is not a unit and not an associate of p. Hence p is not prime in the Gaussian integers.
15. Let p be an odd prime in \mathbb{Z} with $p \equiv 3(\bmod 4)$. Prove that p is prime in $\mathbb{Z}[i]$.
Solution: Suppose that p is not prime in $\mathbb{Z}[i]$. By exercise 13 , there exist Gaussian integers w and z where $p=w z, z$ is not a unit, z is not an associate of p, w is not a unit, and w is not an associate of p.
Since w and z are not units, $N(w) \neq 1$ and $N(z) \neq 1$. Since w and z are divisors of p and they are not associates of p, by exercise 9 , we
must have that $N(w) \neq p^{2}$ and $N(z) \neq p^{2}$.
Since $p=w z$ we have that $p^{2}=N(p)=N(w z)=N(w) N(z)$. Since p is prime in \mathbb{Z}, the only divisors of p^{2} are $1, p$, and p^{2}. Hence $N(w)$ and $N(z)$ must be either $1, p$, or p^{2}. From the arguments above we see that we must have that $N(w)=N(z)=p$. Let $w=a+b i$ where $a, b \in \mathbb{Z}$. Then $p=N(w)=a^{2}+b^{2}$. However from class, we know that a prime that is congruent to 3 modulo 4 cannot be the sum of two squares (we showed that the equation $\overline{3}=\bar{p}=\bar{a}^{2}+\bar{b}^{2}$ has no solutions in \mathbb{Z}_{4}). Hence we have a contradiction. Thus p must be prime in $\mathbb{Z}[i]$.
16. Let $z, w \in \mathbb{Z}[i]$. Prove that w divides z if and only if \bar{w} divides \bar{z}.

Solution: Suppose that w divides z. Then there exists an element $q \in \mathbb{Z}[i]$ such that $w q=z$. Hence $\overline{w q}=\bar{z}$. Thus, $\bar{w} \cdot \bar{q}=\bar{z}$. Hence \bar{w} divides \bar{z}.
Conversely, suppose that \bar{w} divides \bar{z}. Then there exists an element $q \in \mathbb{Z}[i]$ such that $\bar{w} \cdot q=\bar{z}$. Hence $\overline{\bar{w} \cdot q}=\overline{\bar{z}}$. Thus, $\overline{\bar{w}} \cdot \bar{q}=\overline{\bar{z}}$. So, $w \cdot \bar{q}=z$. Therefore w divides z.
17. (a) $N(v)=N(\bar{v})$ for all Gaussian integers v.

Solution: Suppose that $v=a+b i \in \mathbb{Z}[i]$. Then

$$
N(v)=N(a+b i)=a^{2}+b^{2}=a^{2}+(-b)^{2}=N(a-b i)=N(\bar{v})
$$

(b) For any Gaussian integer u we have the following: u is a unit iff \bar{u} is a unit.
Solution: We use exercise (17a). We have that u is a unit if and only if $N(u)=1$ if and only if $N(\bar{u})=1$ if and only if \bar{u} is a unit.
(c) Let $z \in \mathbb{Z}[i]$. Prove that z is prime if and only if \bar{z} is prime.

Solution: We will prove the contrapositive: z is not prime if and only if \bar{z} not is prime.
Note that we only have to prove one direction of this exercise. Suppose that we prove the statement "Let w be a Gaussian integer. If w is not prime, then \bar{w} is not prime." Plugging in $w=z$ gives one direction: If z is not prime, then \bar{z} not is prime. Plugging in $w=\bar{z}$ and using the fact that $\bar{z}=z$ we get the other direction: If \bar{z} is not prime then if z not is prime.
We now prove: If w is not prime, then \bar{w} is not prime.

Suppose that w in not prime in the Gaussian integers. Then by negating the definition of prime, there exists a Gaussian integer α that divides w such that (i) α is not a unit and (ii) α is not an associate of w. Since α is a divisor of w, we have that $w=\alpha \beta$ where β is a Gaussian integer. Conjugating this equation we get that $\bar{w}=\bar{\alpha} \bar{\beta}$. Therefore, $\bar{\alpha}$ is a divisor of \bar{w}. If we now show that $\bar{\alpha}$ is not a unit and not an associate of \bar{w} then we have shown that \bar{w} is not a prime in the Gaussian integers.
Let us first show that $\bar{\alpha}$ is not a unit. If $\bar{\alpha}$ was a unit, by exercise 17 b we would have that α was a unit. But from above we know that α is not a unit. Therefore, $\bar{\alpha}$ is not a unit.
We now show that $\bar{\alpha}$ is not an associate of \bar{w}. Suppose that $\bar{\alpha}$ was an associate of \bar{w}. Then $\bar{\alpha}=u \bar{w}$ where u is a unit of the Gaussian integers. Conjugating this equation we get that $\alpha=\bar{u} w$. By exercise 17 b we have that \bar{u} is a unit. Thus from $\alpha=\bar{u} w$ we get that α is an associate of w. But above we had that α was not an associate of w. Therefore, we must have that $\bar{\alpha}$ is not an associate of \bar{w}.
18. Let $z \in \mathbb{Z}[i]$. Prove that if $N(z)$ is a prime in \mathbb{Z}, then z is prime in $\mathbb{Z}[i]$.

Solution: We prove the contrapositive: If z is not prime, then $N(z)$ is not prime.

Suppose that z is not prime in $\mathbb{Z}[i]$. If $z=0$, then $N(0)=0$ which is not prime in \mathbb{Z}. If z is a unit, then $N(z)=1$ which is not prime in \mathbb{Z}.
Henceforth, we assume that $z \neq 0$ and z is not a unit. This implies that $N(z)$ is an integer and $N(z) \geq 1$.
By exercise 13 , there exists $w, x \in \mathbb{Z}[i]$ such that $z=w x$, where w is not a unit, w is not an associate of z, where x is not a unit, and x is not an associate of z.
Since w and x are not units, $N(w) \neq 1$ and $N(x) \neq 1$. Since w and x are divisors of z and they are not associates of z, by exercise 9 , we must have that $N(w) \neq N(z)$ and $N(x) \neq N(z)$.
Since $z=w x$, we have that $N(z)=N(w x)=N(w) N(x)$. Thus $N(w)$ and $N(x)$ are divisors of $N(z)$ in \mathbb{Z}. From above, we have that $1<N(w)<N(z)$ and $1<N(x)<N(z)$. Therefore, we have factored $N(z)=N(w) N(x)$ non-trivially, and hence $N(z)$ is not a prime in \mathbb{Z}.
19. Let $w, y, z \in \mathbb{Z}[i]$. Prove that if w is a unit and z divides $w y$, then z divides y.
Solution: Suppose that w is a unit and z divides $w y$. This implies that there exists an element $k \in \mathbb{Z}[i]$ with $w y=z k$. Since w is a unit, we know that w^{-1} is in $\mathbb{Z}[i]$. Thus $w^{-1}(w y)=w^{-1}(z k)$. So $y=z\left(w^{-1} k\right)$. Since $w^{-1} k \in \mathbb{Z}[i]$ we know that z divides y.

