Math 446 - Homework \# 6

1. Do the following calculations in $\mathbb{Z}[i]$.
(a) $(2+10 i)+(-3+15 i)$
(b) $(-13+i)-(2-3 i)$
(c) $(1+3 i)(2-10 i)$
(d) $\frac{1+i}{i}$
(e) $\frac{2-3 i}{1-2 i}$
2. Calculate the norms of the following elements of $\mathbb{Z}[i]$.
(a) i
(b) $2-i$
(c) 15
(d) $15+102 i$
3. List all the associates of $-1+2 i$.
4. List all the associates of 10 .
5. Carry out the division algorithm for z and w. That is, find q and r in $\mathbb{Z}[i]$ with $z=w q+r$.
(a) $z=-8-i$ and $w=3+2 i$
(b) $z=5+i$ and $w=-1-2 i$
(c) $z=33+5 i$ and $w=10-2 i$
6. Determine whether or not $2+3 i$ divides $10-11 i$ in $\mathbb{Z}[i]$.
7. Determine whether or not $3-2 i$ divides $10+i$ in $\mathbb{Z}[i]$.
8. Determine whether or not $2+i$ is prime in $\mathbb{Z}[i]$. Find all the divisors of $2+i$.
9. Let w and v be Gaussian integers with $w \neq 0$ and $v \neq 0$. If w divides v and $N(w)=N(v)$, then w is an associate of v.
10. Can there exist Gaussian integers z and w where $N(z)$ divides $N(w)$, but z does not divide w ? Try to find some cases that are non-trivial, ie where $1<N(z)<N(w)$. [Hint: You might need to write a computer program.]
11. Determine whether or not 2 is prime in $\mathbb{Z}[i]$. Find all the divisors of 2 .
12. Determine whether or not 13 is prime in $\mathbb{Z}[i]$. Find all the divisors of 13.
13. Let z be a Gaussian integer. Suppose that z is not prime in $\mathbb{Z}[i]$. Suppose further that $z \neq 0$ and z is not a unit. Then there exist Gaussian integers w and v where
(a) $z=w v$
(b) w is not a unit and w is not an associate of z
(c) v is not a unit and v is not an associate of z

That is, z factors non-trivially.
14. Let p be an odd prime in \mathbb{Z} with $p \equiv 1(\bmod 4)$. Prove that p is not prime in $\mathbb{Z}[i]$.
15. Let p be an odd prime in \mathbb{Z} with $p \equiv 3(\bmod 4)$. Prove that p is prime in $\mathbb{Z}[i]$.
16. Let $z, w \in \mathbb{Z}[i]$. Prove that w divides z if and only if \bar{w} divides \bar{z}.
17. (a) $N(v)=N(\bar{v})$ for all Gaussian integers v.
(b) For any Gaussian integer u we have the following: u is a unit iff \bar{u} is a unit.
(c) Let $z \in \mathbb{Z}[i]$. Prove that z is prime if and only if \bar{z} is prime.
18. Let $z \in \mathbb{Z}[i]$. Prove that if $N(z)$ is a prime in \mathbb{Z}, then z is prime in $\mathbb{Z}[i]$.
19. Let $w, y, z \in \mathbb{Z}[i]$. Prove that if w is a unit and z divides $w y$, then z divides y.

