Math 446 - Homework # 6

- 1. Do the following calculations in $\mathbb{Z}[i]$.
 - (a) (2+10i) + (-3+15i)(b) (-13+i) - (2-3i)(c) (1+3i)(2-10i)(d) $\frac{1+i}{i}$ (e) $\frac{2-3i}{1-2i}$
- 2. Calculate the norms of the following elements of $\mathbb{Z}[i]$.
 - (a) i
 - (b) 2 i
 - (c) 15
 - (d) 15 + 102i
- 3. List all the associates of -1 + 2i.
- 4. List all the associates of 10.
- 5. Carry out the division algorithm for z and w. That is, find q and r in $\mathbb{Z}[i]$ with z = wq + r.
 - (a) z = -8 i and w = 3 + 2i
 - (b) z = 5 + i and w = -1 2i
 - (c) z = 33 + 5i and w = 10 2i
- 6. Determine whether or not 2 + 3i divides 10 11i in $\mathbb{Z}[i]$.
- 7. Determine whether or not 3 2i divides 10 + i in $\mathbb{Z}[i]$.
- 8. Determine whether or not 2 + i is prime in $\mathbb{Z}[i]$. Find all the divisors of 2 + i.
- 9. Let w and v be Gaussian integers with $w \neq 0$ and $v \neq 0$. If w divides v and N(w) = N(v), then w is an associate of v.

- 10. Can there exist Gaussian integers z and w where N(z) divides N(w), but z does not divide w? Try to find some cases that are non-trivial, ie where 1 < N(z) < N(w). [Hint: You might need to write a computer program.]
- 11. Determine whether or not 2 is prime in $\mathbb{Z}[i]$. Find all the divisors of 2.
- 12. Determine whether or not 13 is prime in $\mathbb{Z}[i]$. Find all the divisors of 13.
- 13. Let z be a Gaussian integer. Suppose that z is not prime in $\mathbb{Z}[i]$. Suppose further that $z \neq 0$ and z is not a unit. Then there exist Gaussian integers w and v where
 - (a) z = wv
 - (b) w is not a unit and w is not an associate of z
 - (c) v is not a unit and v is not an associate of z

That is, z factors non-trivially.

- 14. Let p be an odd prime in \mathbb{Z} with $p \equiv 1 \pmod{4}$. Prove that p is not prime in $\mathbb{Z}[i]$.
- 15. Let p be an odd prime in \mathbb{Z} with $p \equiv 3 \pmod{4}$. Prove that p is prime in $\mathbb{Z}[i]$.
- 16. Let $z, w \in \mathbb{Z}[i]$. Prove that w divides z if and only if \overline{w} divides \overline{z} .
- 17. (a) $N(v) = N(\overline{v})$ for all Gaussian integers v.
 - (b) For any Gaussian integer u we have the following: u is a unit iff \overline{u} is a unit.
 - (c) Let $z \in \mathbb{Z}[i]$. Prove that z is prime if and only if \overline{z} is prime.
- 18. Let $z \in \mathbb{Z}[i]$. Prove that if N(z) is a prime in \mathbb{Z} , then z is prime in $\mathbb{Z}[i]$.
- 19. Let $w, y, z \in \mathbb{Z}[i]$. Prove that if w is a unit and z divides wy, then z divides y.