Math 4570 - Homework \# 6
 Inner Product Spaces

We begin with some definitions that will be used in this homework assignment.

Definition: Let V be a vector space and W_{1} and W_{2} be subspaces of V. We say that V is the direct sum of W_{1} and W_{2} and write $V=W_{1} \oplus W_{2}$ if

$$
V=W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1}, w_{2} \in W_{2}\right\}
$$

and $W_{1} \cap W_{2}=\{\mathbf{0}\}$.
Definition: Let V be an inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$. Let W be a subspace of V. Define

$$
W^{\perp}=\{v \in V \mid\langle v, w\rangle=0 \text { for all } w \in W\}
$$

That is, W^{\perp} consists of the vectors from V that are orthogonal to every vector in W.

Definition: Let $A \in M_{n, n}(\mathbb{C})$. The conjugate transpose of A is defined to be the matrix A^{*} where the i, j-th entry of A^{*} is $\left(A^{*}\right)_{i, j}=\overline{A_{j, i}}$. That is, we transpose A and then conjugate each entry to get A^{*}. The trace of A is the sum of the diagonal elements of A, that is $\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i, i}$.

The homework problems begin here.

1. Let $z, w \in \mathbb{C}$. Prove that:
(a) $\overline{\bar{z}}=z$
(b) $\overline{z+w}=\bar{z}+\bar{w}$
(c) $\overline{z w}=\bar{z} \cdot \bar{w}$
(d) $\overline{\left(\frac{z}{w}\right)}=\frac{\bar{z}}{\bar{w}}$ if $w \neq 0$
(e) $|z|^{2}=z \bar{z}$ where $|a+b i|=\sqrt{a^{2}+b^{2}}$
(f) $z \bar{z} \in \mathbb{R}$ with $z \bar{z} \geq 0$. Furthermore, $z \bar{z}=0$ iff $z=0$.
2. (a) Verify that $\beta=\left\{\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right\}$ is an orthonomal basis for \mathbb{R}^{2}. Then express the vector $w=(3,7)$ in terms of the elements of β.
(b) Verify that $\beta=\left\{\left(\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right),\left(\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right),\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)\right\}$ is an orthonomal basis for \mathbb{R}^{3}. Then express the vector $w=(-1,0,2)$ in terms of the elements of β.
3. (a) Transform the following basis of \mathbb{R}^{3} into an orthonormal basis using the Gram-Schmidt process:

$$
\beta=\{(1,1,1),(-1,1,0),(1,2,1)\}
$$

(b) Transform the following basis of \mathbb{R}^{3} into an orthonormal basis using the Gram-Schmidt process:

$$
\beta=\{(1,0,0),(3,7,-2),(0,4,1)\}
$$

(c) Transform the following basis of \mathbb{R}^{4} into an orthonormal basis using the Gram-Schmidt process:

$$
\beta=\{(0,2,1,0),(1,-1,0,0),(1,2,0,-1),(1,0,0,1)\}
$$

4. Let V be an inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$. Then for all $x, y, z \in V$ and $c \in F$ we have
(a) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$
(b) $\langle x, c y\rangle=\bar{c}\langle x, y\rangle$
(c) $\langle x, x\rangle=0$ iff $x=0$
5. Let V be an inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$. Then for all $x, y \in V$ and $c \in F$ we have
(a) $\|x\|^{2}=\langle x, x\rangle$
(b) $\|c x\|=|c| \cdot\|x\|$
(c) $\|x\| \geq 0$. Furthermore, $\|x\|=0$ iff $x=0$.
(d) (Pythagorean Theorem) If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthogonal set in V and $a_{1}, a_{2}, \ldots, a_{n} \in F$ then

$$
\left\|\sum_{i=1}^{n} a_{i} v_{i}\right\|^{2}=\sum_{i=1}^{n}\left|a_{i}\right| \cdot\left\|v_{i}\right\|^{2} .
$$

In particular, setting $a_{i}=1$ for all i then we get

$$
\left\|\sum_{i=1}^{n} v_{i}\right\|^{2}=\sum_{i=1}^{n} \cdot\left\|v_{i}\right\|^{2}
$$

6. Let V be an inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$.
(a) If $v \in V$, then $\langle\mathbf{0}, v\rangle=\langle v, \mathbf{0}\rangle=0$
(b) If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthogonal set of vectors from V, then S is a linearly independent set.
7. Let $V=\mathbb{R}^{3}$ and $F=\mathbb{R}$. Let $W=\operatorname{span}(\{(1,0,0)\})$. Calculate W^{\perp}.
8. Let V be an inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$. Let W be a subspace of V. Prove:
(a) W^{\perp} is a subspace of V.
(b) $\{0\}^{\perp}=\mathrm{V}$
(c) $V^{\perp}=\{\mathbf{0}\}$
(d) If $W_{1} \subseteq W_{2}$, then $W_{2}^{\perp} \subset W_{1}^{\perp}$.
9. Let V be a vector space and W_{1} and W_{2} be subspaces of V. Prove that $V=W_{1} \oplus W_{2}$ if and only if every vector $x \in V$ can be expressed uniquely in the form $x=w_{1}+w_{2}$ where $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$.
10. Let V be a finite-dimensional inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$. Let W be a subspace of V. Prove that $V=W \oplus W^{\perp}$.
