Math 4570 - Homework # 6 Inner Product Spaces

We begin with some definitions that will be used in this homework assignment.

Definition: Let V be a vector space and W_1 and W_2 be subspaces of V. We say that V is the **direct sum** of W_1 and W_2 and write $V = W_1 \oplus W_2$ if

$$V = W_1 + W_2 = \{ w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2 \}$$

and $W_1 \cap W_2 = \{0\}.$

Definition: Let V be an inner product space over $F = \mathbb{R}$ or $F = \mathbb{C}$. Let W be a subspace of V. Define

$$W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W \}$$

That is, W^{\perp} consists of the vectors from V that are orthogonal to every vector in W.

Definition: Let $A \in M_{n,n}(\mathbb{C})$. The **conjugate transpose** of A is defined to be the matrix A^* where the i, j-th entry of A^* is $(A^*)_{i,j} = \overline{A_{j,i}}$. That is, we transpose A and then conjugate each entry to get A^* . The **trace** of A is the sum of the diagonal elements of A, that is $tr(A) = \sum_{i=1}^{n} A_{i,i}$.

The homework problems begin here.

- 1. Let $z, w \in \mathbb{C}$. Prove that:
 - (a) $\overline{\overline{z}} = z$
 - (b) $\overline{z+w} = \overline{z} + \overline{w}$
 - (c) $\overline{zw} = \overline{z} \cdot \overline{w}$
 - (d) $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$ if $w \neq 0$
 - (e) $|z|^2 = z\overline{z}$ where $|a + bi| = \sqrt{a^2 + b^2}$
 - (f) $z\overline{z} \in \mathbb{R}$ with $z\overline{z} \ge 0$. Furthermore, $z\overline{z} = 0$ iff z = 0.

- 2. (a) Verify that $\beta = \left\{ \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \right\}$ is an orthonomal basis for \mathbb{R}^2 . Then express the vector w = (3, 7) in terms of the elements of β .
 - (b) Verify that $\beta = \left\{ \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right), \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \right\}$ is an orthonomal basis for \mathbb{R}^3 . Then express the vector w = (-1, 0, 2) in terms of the elements of β .
- 3. (a) Transform the following basis of \mathbb{R}^3 into an orthonormal basis using the Gram-Schmidt process:

$$\beta = \{(1, 1, 1), (-1, 1, 0), (1, 2, 1)\}$$

(b) Transform the following basis of \mathbb{R}^3 into an orthonormal basis using the Gram-Schmidt process:

$$\beta = \{(1,0,0), (3,7,-2), (0,4,1)\}$$

(c) Transform the following basis of \mathbb{R}^4 into an orthonormal basis using the Gram-Schmidt process:

$$\beta = \{(0,2,1,0), (1,-1,0,0), (1,2,0,-1), (1,0,0,1)\}$$

- 4. Let V be an inner product space over $F = \mathbb{R}$ or $F = \mathbb{C}$. Then for all $x, y, z \in V$ and $c \in F$ we have
 - (a) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
 - (b) $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$
 - (c) $\langle x, x \rangle = 0$ iff x = 0
- 5. Let V be an inner product space over $F = \mathbb{R}$ or $F = \mathbb{C}$. Then for all $x, y \in V$ and $c \in F$ we have
 - (a) $||x||^2 = \langle x, x \rangle$
 - (b) $||cx|| = |c| \cdot ||x||$
 - (c) $||x|| \ge 0$. Furthermore, ||x|| = 0 iff x = 0.

(d) (Pythagorean Theorem) If $\{v_1, v_2, \ldots, v_n\}$ is an orthogonal set in V and $a_1, a_2, \ldots, a_n \in F$ then

$$\left\|\sum_{i=1}^{n} a_{i} v_{i}\right\|^{2} = \sum_{i=1}^{n} |a_{i}| \cdot \|v_{i}\|^{2}.$$

In particular, setting $a_i = 1$ for all *i* then we get

$$\left\|\sum_{i=1}^{n} v_{i}\right\|^{2} = \sum_{i=1}^{n} \cdot \|v_{i}\|^{2}.$$

- 6. Let V be an inner product space over $F = \mathbb{R}$ or $F = \mathbb{C}$.
 - (a) If $v \in V$, then $\langle \mathbf{0}, v \rangle = \langle v, \mathbf{0} \rangle = 0$
 - (b) If $S = \{v_1, v_2, \dots, v_n\}$ is an orthogonal set of vectors from V, then S is a linearly independent set.
- 7. Let $V = \mathbb{R}^3$ and $F = \mathbb{R}$. Let $W = \text{span}(\{(1,0,0)\})$. Calculate W^{\perp} .
- 8. Let V be an inner product space over $F = \mathbb{R}$ or $F = \mathbb{C}$. Let W be a subspace of V. Prove:
 - (a) W^{\perp} is a subspace of V.
 - (b) $\{\mathbf{0}\}^{\perp} = \mathbf{V}$
 - (c) $V^{\perp} = \{\mathbf{0}\}$
 - (d) If $W_1 \subseteq W_2$, then $W_2^{\perp} \subset W_1^{\perp}$.
- 9. Let V be a vector space and W_1 and W_2 be subspaces of V. Prove that $V = W_1 \oplus W_2$ if and only if every vector $x \in V$ can be expressed uniquely in the form $x = w_1 + w_2$ where $w_1 \in W_1$ and $w_2 \in W_2$.
- 10. Let V be a finite-dimensional inner product space over $F = \mathbb{R}$ or $F = \mathbb{C}$. Let W be a subspace of V. Prove that $V = W \oplus W^{\perp}$.