Math 5800
 Homework \# 6
 Sequences of functions and the standard construction

1. Consider the sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ for $n \geq 1$ where

$$
f_{n}(x)=x+\frac{(-1)^{n}}{n}
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)=x
$$

for all $x \in \mathbb{R}$.
(a) Draw a picture of $f_{1}, f_{2}, f_{3}, f_{4}$, and f on the same graph.
(b) Write out the first 4 elements of the sequence $\left(f_{n}(1)\right)_{n=1}^{\infty}$ and draw them on the previous graph from (a).
(c) Prove that $\left(f_{n}(1)\right)_{n=1}^{\infty}$ converges to 1.
(d) Prove that the sequence f_{n} converges to f pointwise on all of \mathbb{R}.
2. Consider the sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ for $n \geq 1$ where

$$
f_{n}(x)=\left\{\begin{array}{cc}
x^{2} / n & \text { if } x \in[-1,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

Let

$$
f(x)=\left\{\begin{array}{cc}
1 & \text { if } x=1 \text { or } x=-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Draw a picture of f. Also draw a picture of f_{1}, f_{2}, and f_{3} on the same graph.
(b) Prove that the sequence f_{n} converges to f pointwise on all of $\mathbb{R}-\{1,-1\}$
(c) Prove that f_{n} does not converge to f pointwise on $\{1,-1\}$.
3. (Standard construction problem) Let

$$
f(x)=\left\{\begin{array}{cc}
x+1 & \text { if } x \in[-1,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Calculate explicitly the standard construction γ_{1} and γ_{2} for f on $[-1,1]$. Draw pictures of each.
(b) Prove that γ_{n} converges pointwise to f on $[-1,1]$. That is, show that if $x \in[-1,1]$, then $\lim _{n \rightarrow \infty} \gamma_{n}(x)=f(x)$.
[Hint: Use the fact that f is an increasing function to show that if $x \in[-1,1]$, then $\left|\gamma_{n}(x)-f(x)\right| \leq 1 / 2^{n-1}$.
(c) Prove that γ_{n} converges pointwise to f on all of \mathbb{R}.
4. (Standard construction problem) Let

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & \text { if } x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Calculate explicitly the standard construction γ_{1} and γ_{2} for f on $[0,1]$. Draw pictures of each.
(b) Prove that γ_{n} converges pointwise to f on $[0,1]$. That is, show that if $x \in[0,1]$, then $\lim _{n \rightarrow \infty} \gamma_{n}(x)=f(x)$.
[Hint: For $x \in\left[(k-1) / 2^{n}, k / 2^{n}\right)$ show that $\left|f(x)-\gamma_{n}(x)\right|<$ $\left.k^{2} / 2^{2 n}-(k-1)^{2} / 2^{2 n}<1 / 2^{n-1}.\right]$
(c) Prove that γ_{n} converges pointwise to f on all of \mathbb{R}.
5. Suppose that $\left(f_{n}\right)_{n=1}^{\infty}$ and $\left(g_{n}\right)_{n=1}^{\infty}$ are sequences of functions with f_{n} : $\mathbb{R} \rightarrow \mathbb{R}$ and $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$. Let $A \subseteq \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$. If f_{n} converges to f pointwise on A and g_{n} converges to g pointwise on A, then $f_{n}+g_{n}$ converges to $f+g$ pointwise on A.
6. Suppose that $\left(f_{n}\right)_{n=1}^{\infty}$ and $\left(g_{n}\right)_{n=1}^{\infty}$ are sequences of functions with f_{n} : $\mathbb{R} \rightarrow \mathbb{R}$ and $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$. If f_{n} converges to f almost everywhere on \mathbb{R} and g_{n} converges to g almost everywhere on \mathbb{R}, then $f_{n}+g_{n}$ converges to $f+g$ almost everywhere on \mathbb{R}.

