Math 465 - Homework \# 6 Compact Sets

1. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers. Show that the finite set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is compact using the definition of compactness.
2. Consider the set $S=[1, \infty)$. Consider the open cover

$$
X=\{(n-1, n+1) \mid n \in \mathbb{N}\}=\{(0,2),(1,3),(2,4),(3,5), \ldots\}
$$

of S. Prove that X contains no finite subcover of S. Hence S is not compact.
3. Consider the set $S=(-1,1)$ Consider the open cover

$$
X=\left\{\left.\left(x-\frac{1}{4}, x+\frac{1}{4}\right) \right\rvert\, x \in \mathbb{Q} \text { and }-1<x<1\right\} .
$$

Find a finite subcover of X that covers S. (Note that although X contains a finite subcover of S, S is not compact-because S is not closed. So, there must exist an infinite cover of S that has no finite subcover - even though the cover X given above does not.)
4. Let $f:[a, \infty) \rightarrow \mathbb{R}$ be continous on all of $[a, \infty)$. Suppose that $\lim _{x \rightarrow \infty} f(x)$ exists. Prove that f is bounded on $[a, \infty)$.
5. Let A and B be compact subsets of \mathbb{R}.
(a) Prove that $A \cap B$ is compact.
(b) Prove that $A \cup B$ is compact.
(c) Find an infinite family A_{n} of compact sets for which $\cup_{n=1}^{\infty} A_{n}$ is not compact.
(d) Suppose that A_{n} is a compact set for $n \geq 1$. Prove that $\cap_{n=1}^{\infty} A_{n}$ is compact.
6. Is S compact or not compact? Explain why.
(a) $S=(0,1]$
(b) $S=[-10,0] \cup[1,2]$
(c) $S=(-\infty, 2)$
(d) $S=(-\infty, 10]$
(e) $S=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$
7. Suppose that $\left(a_{n}\right)$ is a sequence that converges to L. Prove that the set

$$
A=\left\{a_{n} \mid n \in \mathbb{N}\right\} \cup\{L\}
$$

is compact.

