Math 465 - Homework # 6 Compact Sets

- 1. Let x_1, x_2, \ldots, x_n be real numbers. Show that the finite set $\{x_1, x_2, \ldots, x_n\}$ is compact using the definition of compactness.
- 2. Consider the set $S = [1, \infty)$. Consider the open cover

$$X = \{ (n-1, n+1) \mid n \in \mathbb{N} \} = \{ (0, 2), (1, 3), (2, 4), (3, 5), \ldots \}$$

of S. Prove that X contains no finite subcover of S. Hence S is not compact.

3. Consider the set S = (-1, 1) Consider the open cover

$$X = \left\{ \left(x - \frac{1}{4}, x + \frac{1}{4} \right) \mid x \in \mathbb{Q} \text{ and } -1 < x < 1 \right\}.$$

Find a finite subcover of X that covers S. (Note that although X contains a finite subcover of S, S is not compact—because S is not closed. So, there must exist an infinite cover of S that has no finite subcover—even though the cover X given above does not.)

- 4. Let $f : [a, \infty) \to \mathbb{R}$ be continuous on all of $[a, \infty)$. Suppose that $\lim_{x \to \infty} f(x)$ exists. Prove that f is bounded on $[a, \infty)$.
- 5. Let A and B be compact subsets of \mathbb{R} .
 - (a) Prove that $A \cap B$ is compact.
 - (b) Prove that $A \cup B$ is compact.
 - (c) Find an infinite family A_n of compact sets for which $\bigcup_{n=1}^{\infty} A_n$ is not compact.
 - (d) Suppose that A_n is a compact set for $n \ge 1$. Prove that $\bigcap_{n=1}^{\infty} A_n$ is compact.
- 6. Is S compact or not compact? Explain why.
 - (a) S = (0, 1]
 - (b) $S = [-10, 0] \cup [1, 2]$

- (c) $S = (-\infty, 2)$ (d) $S = (-\infty, 10]$ (e) $S = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$
- 7. Suppose that (a_n) is a sequence that converges to L. Prove that the set

$$A = \{a_n | n \in \mathbb{N}\} \cup \{L\}$$

is compact.