Homework \# 6 - Quotient Rings

1. Calculate the elements of the factor rings R / I and calculate their addition and multiplication tables.
(a) $R=\mathbb{Z}$ and $I=3 \mathbb{Z}$.
(b) $R=\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ and $I=\{(\overline{0}, \overline{0}),(\overline{0}, \overline{1}),(\overline{0}, \overline{2})\}$
(c) $R=\mathbb{Z}_{8}$ and $I=\langle\overline{4}\rangle=\{\overline{0}, \overline{4}\}$.
2. Let R be a ring, I be an ideal, $x \in R$, and $n \in \mathbb{Z}$ with $n \geq 1$. Prove that $(x+I)^{n}=x^{n}+I$ in the quotient ring R / I.
3. Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. Let I be an ideal of R. Prove that

$$
\phi(I)=\{\phi(x) \mid x \in I\}
$$

is an ideal of $\phi(R)=\{\phi(x) \mid x \in R\}$. In particular, if ϕ is onto, then $\phi(I)$ is an ideal of R^{\prime}.
4. Let R be a ring. Prove that $R /\{0\}$ is isomorphic to R.
5. Let R be a ring and I be an ideal of R. We know that R / I is a ring. Prove the following:
(a) If R is commutative, then R / I is commutative.
(b) If R has a multiplicative identity that is denoted by 1 , then $1+I$ is a multiplicative identity for R / I.
6. Let R be a ring and I be an ideal of R. Let $\pi: R \rightarrow R / I$ be defined by $\pi(x)=x+I$. Prove that π is a ring homomorphism. (π is sometimes called the reduction homomorphism or canonical homomorphism.)
7. Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. Let I^{\prime} be an ideal of R^{\prime}. Prove that

$$
\phi^{-1}\left(I^{\prime}\right)=\left\{x \in R \mid \phi(x) \in I^{\prime}\right\}
$$

is an ideal of R.

