Math 2550-HW 6-Part 1 Vector spaces

1. Let $V=\mathbb{R}^{3}$ and $F=\mathbb{R}$. We talked about how V is a vector space over F in class using the usual vector addition and scalar multiplication:

$$
\begin{aligned}
\langle x, y, z\rangle+\langle a, b, c\rangle & =\langle x+a, y+b, z+c\rangle \\
\alpha \cdot\langle x, y, z\rangle & =\langle\alpha x, \alpha y, \alpha z\rangle
\end{aligned}
$$

In this exercise you will verify some of the parts of the vector space definition.
(a) List four elements from V and four elements from F.
(b) Verify part 3 of the vector space definition: If \vec{v} and \vec{w} are in V, then $\vec{v}+\vec{w}=\vec{w}+\vec{v}$.
(c) Verify part 9 of the vector space definition: If α is a scalar in F and \vec{v} and \vec{w} are vectors in V, then $\alpha \cdot(\vec{v}+\vec{w})=\alpha \cdot \vec{w}+\alpha \cdot \vec{v}$.
2. Let $V=P_{2}$ and $F=\mathbb{R}$. Recall that

$$
P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \text { are real numbers }\right\}
$$

We talked about how V is a vector space over F in class using the usual polynomial addition and scalar multiplication:

$$
\begin{gathered}
\left(a_{0}+b_{0} x+c_{0} x^{2}\right)+\left(a_{1}+b_{1} x+c_{1} x^{2}\right)=\left(a_{0}+a_{1}\right)+\left(b_{0}+b_{1}\right) x+\left(c_{0}+c_{1}\right) x^{2} \\
\alpha \cdot\left(a+b x+c x^{2}\right)=\alpha a+\alpha b x+\alpha c x^{2}
\end{gathered}
$$

In this exercise you will verify some of the parts of the vector space definition.
(a) List four elements from V and four elements from F.
(b) Verify part 4 of the vector space definition: If $\vec{v}, \vec{w}, \vec{z}$ are in V, then $(\vec{v}+\vec{w})+\vec{z}=\vec{v}+(\vec{w}+\vec{z})$.
(c) Verify part 8 of the vector space definition: If α and β are scalars in F and \vec{v} is a vector in V, then $(\alpha \beta) \cdot \vec{v}=\alpha \cdot(\beta \cdot \vec{v})$.
3. Let

$$
V=\left\{\left.\left(\begin{array}{ll}
a & 1 \\
1 & b
\end{array}\right) \right\rvert\, a \text { and } b \text { are real numbers }\right\}
$$

and $F=\mathbb{R}$.
For addition we will use the usual matrix addition:

$$
\left(\begin{array}{ll}
c & d \\
e & f
\end{array}\right)+\left(\begin{array}{cc}
g & h \\
i & j
\end{array}\right)=\left(\begin{array}{ll}
c+g & d+h \\
e+i & f+j
\end{array}\right)
$$

For scalar multiplication we use the usual scalar multiplication:

$$
\alpha \cdot\left(\begin{array}{ll}
c & d \\
e & f
\end{array}\right)=\left(\begin{array}{ll}
\alpha c & \alpha d \\
\alpha e & \alpha f
\end{array}\right)
$$

(a) List out four elements from the set of vectors V.
(b) Show that V is not a vector space over F using the addition and scalar multiplication above.
[Hint: Do this by showing that V doesn't satisfy part 1 of the definition of a vector space. Recall that part 1 says: if \vec{v} and \vec{w} are in V, then $\vec{v}+\vec{w}$ is in V.]
4. Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$.

For addition use the usual vector addition:

$$
\langle x, y\rangle+\langle a, b\rangle=\langle x+a, y+b\rangle
$$

Define a new scalar multiplication as follows:

$$
\alpha \cdot\langle x, y\rangle=\langle 2 \alpha x, 2 \alpha y\rangle
$$

(a) List out four elements from the set of vectors V.
(b) Compute $3 \cdot\langle 1,-2\rangle$ using the scalar multiplication given above.
(c) Show that V is not a vector space over F using the addition and scalar multiplication above.
[Hint: Do this by showing that V doesn't satisfy part 7 of the definition of a vector space. Recall that part 7 says: if α is a scalar in F and \vec{v} is in V then $1 \cdot \vec{v}=\vec{v}$.]

