Math 446 - Homework \# 5

1. List the elements of \mathbb{Z}_{7}^{\times}. For each element find it's multiplicative inverse.

Solution: $\mathbb{Z}_{7}^{\times}=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$
We have that $\overline{1}^{-1}=\overline{1}$.
$\overline{2}^{-1}=\overline{4}$ since $\overline{2} \cdot \overline{4}=\overline{8}=\overline{1}$.
$\overline{3}^{-1}=\overline{5}$ since $\overline{3} \cdot \overline{5}=\overline{15}=\overline{1}$.
$\overline{4}^{-1}=\overline{2}$ since $\overline{2} \cdot \overline{4}=\overline{8}=\overline{1}$.
$\overline{5}^{-1}=\overline{3}$ since $\overline{3} \cdot \overline{5}=\overline{15}=\overline{1}$.
$\overline{6}^{-1}=\overline{6}$ since $\overline{6} \cdot \overline{6}=\overline{36}=\overline{1}$.
2. List the elements of \mathbb{Z}_{8}^{\times}. For each element find it's multiplicative inverse.
Solution: $\mathbb{Z}_{8}^{\times}=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$
We have that $\overline{1}^{-1}=\overline{1}$.
$\overline{3}^{-1}=\overline{3}$ since $\overline{3} \cdot \overline{3}=\overline{9}=\overline{1}$.
$\overline{5}^{-1}=\overline{5}$ since $\overline{5} \cdot \overline{5}=\overline{25}=\overline{1}$.
$\overline{7}^{-1}=\overline{7}$ since $\overline{7} \cdot \overline{7}=\overline{49}=\overline{1}$.
3. List the elements of \mathbb{Z}_{15}^{\times}. For each element find it's multiplicative inverse.
Solution: $\mathbb{Z}_{15}^{\times}=\{\overline{1}, \overline{2}, \overline{4}, \overline{7}, \overline{8}, \overline{11}, \overline{13}, \overline{14}\}$
We have that $\overline{1}^{-1}=\overline{1}$.
$\overline{2}^{-1}=\overline{8}$ since $\overline{2} \cdot \overline{8}=\overline{16}=\overline{1}$.
$\overline{4}^{-1}=\overline{4}$ since $\overline{4} \cdot \overline{4}=\overline{16}=\overline{1}$.
$\overline{7}^{-1}=\overline{13}$ since $\overline{7} \cdot \overline{13}=\overline{91}=\overline{1}$.
$\overline{8}^{-1}=\overline{2}$ since $\overline{2} \cdot \overline{8}=\overline{16}=\overline{1}$.
$\overline{11}^{-1}=\overline{11}$ since $\overline{11} \cdot \overline{11}=\overline{121}=\overline{1}$.
$\overline{13}^{-1}=\overline{7}$ since $\overline{7} \cdot \overline{13}=\overline{91}=\overline{1}$.
$\overline{14}^{-1}=\overline{14}$ since $\overline{14} \cdot \overline{14}=\overline{196}=\overline{1}$.
4. Find all of the primitive roots for \mathbb{Z}_{7}^{\times}. How many are there?

Solution: $\mathbb{Z}_{7}^{\times}=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$.
$\overline{2}$ is not a primitive root because the positive powers of $\overline{2}$ do not give us all of \mathbb{Z}_{7}^{\times}. Here are the first few positive powers of $\overline{2}$:

$$
\begin{aligned}
\overline{2}^{1} & =\overline{2} \\
\overline{2}^{2} & =\overline{4} \\
\overline{2}^{3} & =\overline{1} \\
\overline{2}^{4} & =\overline{2} \\
\overline{2}^{5} & =\overline{4} \\
\overline{2}^{6} & =\overline{1} \\
\vdots & \vdots
\end{aligned}
$$

Note how the powers keep repeating $\overline{2}, \overline{4}$, and $\overline{1}$ forever.
On the other hand, $\overline{3}$ is a primitive root because we get all of the elements of \mathbb{Z}_{7}^{\times}from the positive powers of $\overline{3}$ as we see below:

$$
\begin{aligned}
\overline{3}^{1} & =\overline{3} \\
\overline{3}^{2} & =\overline{2} \\
\overline{3}^{3} & =\overline{6} \\
\overline{3}^{4} & =\overline{4} \\
\overline{3}^{5} & =\overline{5} \\
\overline{3}^{6} & =\overline{1}
\end{aligned}
$$

$\overline{4}$ is not a primitive root because the positive powers of $\overline{4}$ do not give us all of \mathbb{Z}_{7}^{\times}. Here are the first few positive powers of $\overline{4}$:

$$
\begin{aligned}
& \overline{4}^{1}=\overline{4} \\
& \overline{4}^{2}=\overline{2} \\
& \overline{4}^{3}=\overline{1} \\
& \overline{4}^{4}=\overline{4} \\
& \overline{4}^{5}=\overline{2} \\
& \overline{4}^{6}=\overline{1}
\end{aligned}
$$

Note how the powers keep repeating $\overline{4}, \overline{2}$, and $\overline{1}$ forever.
$\overline{5}$ is a primitive root because we get all of the elements of \mathbb{Z}_{7}^{\times}from the positive powers of $\overline{5}$ as we see below:

$$
\begin{aligned}
\overline{5}^{1} & =\overline{5} \\
\overline{5}^{2} & =\overline{4} \\
\overline{5}^{3} & =\overline{6} \\
\overline{5}^{4} & =\overline{2} \\
\overline{5}^{5} & =\overline{3} \\
\overline{5}^{6} & =\overline{1}
\end{aligned}
$$

$\overline{6}$ is not a primitive root because the positive powers of $\overline{6}$ do not give us all of \mathbb{Z}_{7}^{\times}. Here are the first few positive powers of $\overline{6}$:

$$
\begin{aligned}
\overline{6}^{1} & =\overline{6} \\
\overline{6}^{2} & =\overline{1} \\
\overline{6}^{3} & =\overline{6} \\
\overline{6}^{4} & =\overline{1} \\
\overline{6}^{5} & =\overline{6} \\
\overline{6}^{6} & =\overline{1} \\
\vdots & \vdots
\end{aligned}
$$

Note how the powers keep repeating $\overline{6}, \overline{1}$ forever.
Therefore, the only primitive roots in \mathbb{Z}_{7}^{\times}are $\overline{3}$ and $\overline{5}$.
5. Find all of the primitive roots for \mathbb{Z}_{14}^{\times}. How many are there?

Solution: $\mathbb{Z}_{14}^{\times}=\{\overline{1}, \overline{3}, \overline{5}, \overline{9}, \overline{11}, \overline{13}\}$.
The primitive roots are $\overline{3}$ and $\overline{5}$.
6. Find all of the primitive roots for \mathbb{Z}_{9}^{\times}. How many are there?

Solution: $\mathbb{Z}_{9}^{\times}=\{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$.
The primitive roots are $\overline{2}$ and $\overline{5}$.
7. Find all of the primitive roots for \mathbb{Z}_{20}^{\times}. How many are there?

Solution: Recall that there exists a primitive root of \mathbb{Z}_{n}^{\times}if and only if n is of the form $n=2,4, p^{k}$, or $2 p^{l}$ where p is an odd prime. Here we have that $n=20=2^{2} \cdot 5$. Therefore, \mathbb{Z}_{20}^{\times}has no primitive roots.
8. Reduce $\overline{7}^{103}$ in \mathbb{Z}_{13}.

Solution: Note that 13 is prime. Therefore, by Fermat's theorem, since $\operatorname{gcd}(7,13)=1$ we have that $\overline{7}^{12}=\overline{7}^{13-1}=\overline{1}$ in \mathbb{Z}_{13}. Dividing 12 into 103 gives $103=8 \cdot 12+7$. Hence

$$
\begin{aligned}
\overline{7}^{103} & =\overline{7}^{8 \cdot 12+7} \\
& =\left(\overline{7}^{12}\right)^{8} \cdot \overline{7}^{2+2+2+1} \\
& =\overline{1} \cdot \overline{49} \cdot \overline{49} \cdot \overline{49} \cdot \overline{7} \\
& =\overline{10} \cdot \overline{10} \cdot \overline{10} \cdot \overline{7} \\
& =\overline{7000}
\end{aligned}
$$

Note that $7000=538 \cdot 13+6$. Hence

$$
\overline{7}^{103}=\overline{7000}=\overline{538} \cdot \overline{13}+\overline{6}=\overline{538} \cdot \overline{0}+\overline{6}=\overline{6}
$$

9. Reduce $\overline{5}^{127}$ in \mathbb{Z}_{12}.

Solution: Note that

$$
\phi(12)=\left|\mathbb{Z}_{12}^{\times}\right|=|\{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}|=4
$$

By Euler's theorem, since $\operatorname{gcd}(5,12)=1$, we have that $\overline{5}^{\phi(12)}=\overline{5}^{4}=\overline{1}$ in \mathbb{Z}_{12}. Dividing 4 into 127 gives $127=31 \cdot 4+3$. Hence

$$
\begin{aligned}
\overline{5}^{127} & =\overline{5}^{31 \cdot 4+3} \\
& =\left(\overline{5}^{4}\right)^{31} \cdot \overline{5}^{3} \\
& =\overline{1} \cdot \overline{125} \\
& =\overline{125}
\end{aligned}
$$

Note that $125=10 \cdot 12+5$. Hence

$$
\overline{5}^{127}=\overline{125}=\overline{10} \cdot \overline{12}+\overline{5}=\overline{10} \cdot \overline{0}+\overline{5}=\overline{5}
$$

10. (a) Let p be a prime and let $\bar{x} \in \mathbb{Z}_{p}^{\times}$. Prove that \bar{x}^{p-2} is the multiplicative inverse of \bar{x} in \mathbb{Z}_{p}^{\times}.
Solution: Suppose that $\bar{x} \in \mathbb{Z}_{p}^{\times}$. By Fermat's theorem, we have that $\bar{x}^{p-1}=\overline{1}$. Hence $\bar{x} \cdot \bar{x}^{p-2}=\overline{1}$. Therefore, the multiplicative inverse of \bar{x} is \bar{x}^{p-2}.
(b) Use (10a) to find the multiplicative inverse of $\overline{2}$ in \mathbb{Z}_{7}.

Solution: By (10a), the multiplicative inverse of $\overline{2}$ is

$$
\overline{2}^{7-2}=\overline{2}^{5}=\overline{32}=\overline{4} \cdot \overline{7}+\overline{4}=\overline{4} \cdot \overline{0}+\overline{4}=\overline{4}
$$

(c) Use (10a) to find the multiplicative inverse of $\overline{3}$ in \mathbb{Z}_{11}.

Solution: By (10a), the multiplicative inverse of $\overline{3}$ is

$$
\begin{aligned}
\overline{3}^{11-2} & =\overline{3}^{9}=\overline{3}^{3} \cdot \overline{3}^{3} \cdot \overline{3}^{3}=\overline{27} \cdot \overline{27} \cdot \overline{27}=\overline{5} \cdot \overline{5} \cdot \overline{5} \\
& =\overline{125}=\overline{11} \cdot \overline{11}+\overline{4}=\overline{0} \cdot \overline{0}+\overline{4}=\overline{4}
\end{aligned}
$$

11. Let p be a prime and let m and n be positive integers. Let $\bar{a} \in \mathbb{Z}_{p}^{\times}$. Prove that if $m \equiv n(\bmod p-1)$, then $\bar{a}^{m}=\bar{a}^{n}$ in \mathbb{Z}_{p}^{\times}.
Solution: Let $\bar{a} \in \mathbb{Z}_{p}^{\times}$. By Fermat's theorem, $\bar{a}^{p-1}=\overline{1}$ in \mathbb{Z}_{p}^{\times}. Since $m \equiv n(\bmod p-1)$ we have that $m=n+(p-1) k$ for some integer k. Therefore

$$
\bar{a}^{m}=\bar{a}^{n+(p-1) k}=\bar{a}^{n} \cdot\left(\bar{a}^{p-1}\right)^{k}=\bar{a}^{n} \cdot \overline{1}^{k}=\bar{a}^{n} .
$$

Hence $\bar{a}^{m}=\bar{a}^{n}$.
12. Prove that $a^{6 k}-1$ is divisible by 7 for any positive integer a with $\operatorname{gcd}(a, 7)=1$.
Solution: Let a be an integer with $\operatorname{gcd}(a, 7)=1$. Since 7 is prime, by Fermat, we have that $\overline{1}=\bar{a}^{7-1}=\bar{a}^{6}$. Hence

$$
\overline{a^{6 k}-1}=\left(\bar{a}^{6}\right)^{k}+\overline{-1}=\overline{1}+\overline{-1}=\overline{0} .
$$

Thus $\overline{a^{6 k}-1}=\overline{0}$ in \mathbb{Z}_{7}^{\times}. Therefore, 7 divides $a^{6 k}-1$.
13. Prove that 19 is not a divisor of $4 n^{2}+4$ for any integer n.

Solution: Suppose that 19 is a divisor of $4 n^{2}+4$. We will show that this leads to a contradiction. Since 19 divides $4 n^{2}+4$ we have that $4 n^{2}+4 \equiv 0(\bmod 19)$. In \mathbb{Z}_{19} this gives us that

$$
\overline{4 n^{2}+4}=\overline{0} .
$$

Hence

$$
\overline{4} \cdot \bar{n}^{2}+\overline{4}=\overline{0} .
$$

Adding $\overline{15}$ to both sides we have that

$$
\overline{4} \cdot \bar{n}^{2}=\overline{15}
$$

Multiplying both sides by $\overline{4}^{-1}=\overline{5}$ we have that

$$
\overline{5} \cdot \overline{4} \cdot \bar{n}^{2}=\overline{5} \cdot \overline{15} .
$$

So

$$
\overline{20} \cdot \bar{n}^{2}=\overline{75} .
$$

Thus

$$
\bar{n}^{2}=\overline{3 \cdot 19+18} .
$$

So

$$
\bar{n}^{2}=\overline{3} \cdot \overline{19}+\overline{18}=\overline{3} \cdot \overline{0}+\overline{18}=\overline{18} .
$$

We now show that $\bar{n}^{2}=\overline{18}$ has no solutions in \mathbb{Z}_{19}. Here is the check:

$$
\begin{aligned}
\overline{1}^{2} & =\overline{1} \\
\overline{2}^{2} & =\overline{4} \\
\overline{3}^{2} & =\overline{9} \\
\overline{4}^{2} & =\overline{16} \\
\overline{5}^{2} & =\overline{6} \\
\overline{6}^{2} & =\overline{17} \\
\overline{7}^{2} & =\overline{11} \\
\overline{8}^{2} & =\overline{7} \\
\overline{9}^{2} & =\overline{5} \\
\overline{10}^{2} & =\overline{5} \\
\overline{11}^{2} & =\overline{7} \\
\overline{12}^{2} & =\overline{11} \\
\overline{13}^{2} & =\overline{17} \\
\overline{14}^{2} & =\overline{6} \\
\overline{15}^{2} & =\overline{16} \\
\overline{16}^{2} & =\overline{9} \\
\overline{17}^{2} & =\overline{4} \\
\overline{18}^{2} & =\overline{1}
\end{aligned}
$$

Thus we have a contradiction.
14. Let n be an integer with $n \geq 2$.
(a) Let a be an integer with $\operatorname{gcd}(a, n)=1$. Suppose that $\bar{a} \cdot \bar{b}=\bar{a} \cdot \bar{c}$ in \mathbb{Z}_{n}. Prove that $\bar{b}=\bar{c}$.
Solution: Suppose that $\operatorname{gcd}(a, n)=1$ and $\bar{a} \cdot \bar{b}=\bar{a} \cdot \bar{c}$. Since $\operatorname{gcd}(a, n)=1$ we know that $\bar{a} \in \mathbb{Z}_{n}^{\times}$. Therefore, \bar{a}^{-1} exists. So, $\bar{a}^{-1} \cdot \bar{a} \cdot \bar{b}=\bar{a}^{-1} \cdot \bar{a} \cdot \bar{c}$. Thus, $\bar{b}=\bar{c}$.
(b) Let a be an integer with $\operatorname{gcd}(a, n)=1$. Prove that

$$
\bar{a} \cdot \mathbb{Z}_{n}=\{\bar{a} \cdot \overline{0}, \bar{a} \cdot \overline{1}, \bar{a} \cdot \overline{2}, \cdots, \bar{a} \cdot \overline{(n-1)}\}
$$

is equal to \mathbb{Z}_{n}.

Solution: Since $\operatorname{gcd}(a, n)=1$ we know that \bar{a}^{-1} exists in \mathbb{Z}_{n}. We now show that $\bar{a} \cdot \mathbb{Z}_{n}=\mathbb{Z}_{n}$. We do this by showing that $\bar{a} \cdot \mathbb{Z}_{n} \subseteq \mathbb{Z}_{n}$ and $\mathbb{Z}_{n} \subseteq \bar{a} \cdot \mathbb{Z}_{n}$.
Let $\bar{x} \in \bar{a} \cdot \mathbb{Z}_{n}$. Then $\bar{x}=\bar{a} \cdot \bar{y}$ where $\bar{y} \in \mathbb{Z}_{n}$. Then $\bar{x}=\overline{a \cdot y} \in \mathbb{Z}_{n}$. Hence $\bar{a} \cdot \mathbb{Z}_{n} \subseteq \mathbb{Z}_{n}$.
Let $\bar{s} \in \mathbb{Z}_{n}$. Since $\bar{s}=\bar{a} \cdot\left(\bar{a}^{-1} \cdot \bar{s}\right)$ and $\bar{a}^{-1} \cdot \bar{s} \in \mathbb{Z}_{n}$ we have that $\bar{s} \in \bar{a} \cdot \mathbb{Z}_{n}$. Hence $\mathbb{Z}_{n} \subseteq \bar{a} \cdot \mathbb{Z}_{n}$.
(c) Give an example showing that if $\operatorname{gcd}(a, n) \neq 1$ then one can have $\bar{a} \cdot \bar{b}=\bar{a} \cdot \bar{c}$ in \mathbb{Z}_{n}, but $\bar{b} \neq \bar{c}$.
Solution: $\overline{2} \cdot \overline{4}=\overline{2} \cdot \overline{1}$ in \mathbb{Z}_{6}.
15. Prove that if $a \equiv b(\bmod n)$ then $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.

Solution: Since $a \equiv b(\bmod n)$ we have that $a=b+q n$ for some integer q. Let $d=\operatorname{gcd}(a, n)$ and $d^{\prime}=\operatorname{gcd}(b, n)$.
Since $d^{\prime}=\operatorname{gcd}(b, n)$ we have that $d^{\prime} \mid b$ and $d^{\prime} \mid n$. Hence $d^{\prime} k_{1}=b$ and $d^{\prime} k_{2}=n$ for some integers k_{1}, k_{2}. Thus $a=b+q n=d^{\prime} k_{1}+q d^{\prime} k_{2}=$ $d^{\prime}\left(k_{1}+q k_{2}\right)$. So $d^{\prime} \mid a$. So d^{\prime} is a common divisor of a and n. Since $\operatorname{gcd}(a, n)=d$ we must have that $d^{\prime} \leq d$.
Since $d=\operatorname{gcd}(a, n)$ we have that $d \mid a$ and $d \mid n$. Hence $d t_{1}=a$ and $d t_{2}=$ n for some integers t_{1}, t_{2}. Thus $b=a-q n=d t_{1}-q d t_{2}=d\left(t_{1}-q t_{2}\right)$. So $d \mid b$. So d is a common divisor of b and n. Since $\operatorname{gcd}(b, n)=d^{\prime}$ we must have that $d \leq d^{\prime}$.

Since $d^{\prime} \leq d$ and $d \leq d^{\prime}$ we have that $d=d^{\prime}$.

