Math 446 - Homework # 5

1. List the elements of \mathbb{Z}_7^{\times} . For each element find it's multiplicative inverse.

Solution: $\mathbb{Z}_{7}^{\times} = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$ We have that $\overline{1}^{-1} = \overline{1}$. $\overline{2}^{-1} = \overline{4}$ since $\overline{2} \cdot \overline{4} = \overline{8} = \overline{1}$. $\overline{3}^{-1} = \overline{5}$ since $\overline{3} \cdot \overline{5} = \overline{15} = \overline{1}$. $\overline{4}^{-1} = \overline{2}$ since $\overline{2} \cdot \overline{4} = \overline{8} = \overline{1}$. $\overline{5}^{-1} = \overline{3}$ since $\overline{3} \cdot \overline{5} = \overline{15} = \overline{1}$. $\overline{6}^{-1} = \overline{6}$ since $\overline{6} \cdot \overline{6} = \overline{36} = \overline{1}$.

2. List the elements of $\mathbb{Z}_8^{\times}.$ For each element find it's multiplicative inverse.

Solution: $\mathbb{Z}_8^{\times} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ We have that $\overline{1}^{-1} = \overline{1}$. $\overline{3}^{-1} = \overline{3}$ since $\overline{3} \cdot \overline{3} = \overline{9} = \overline{1}$. $\overline{5}^{-1} = \overline{5}$ since $\overline{5} \cdot \overline{5} = \overline{25} = \overline{1}$. $\overline{7}^{-1} = \overline{7}$ since $\overline{7} \cdot \overline{7} = \overline{49} = \overline{1}$.

3. List the elements of \mathbb{Z}_{15}^{\times} . For each element find it's multiplicative inverse.

Solution: $\mathbb{Z}_{15}^{\times} = \{\overline{1}, \overline{2}, \overline{4}, \overline{7}, \overline{8}, \overline{11}, \overline{13}, \overline{14}\}$ We have that $\overline{1}^{-1} = \overline{1}$. $\overline{2}^{-1} = \overline{8}$ since $\overline{2} \cdot \overline{8} = \overline{16} = \overline{1}$. $\overline{4}^{-1} = \overline{4}$ since $\overline{4} \cdot \overline{4} = \overline{16} = \overline{1}$. $\overline{7}^{-1} = \overline{13}$ since $\overline{7} \cdot \overline{13} = \overline{91} = \overline{1}$. $\overline{8}^{-1} = \overline{2}$ since $\overline{2} \cdot \overline{8} = \overline{16} = \overline{1}$. $\overline{11}^{-1} = \overline{11}$ since $\overline{11} \cdot \overline{11} = \overline{121} = \overline{1}$. $\overline{13}^{-1} = \overline{7}$ since $\overline{7} \cdot \overline{13} = \overline{91} = \overline{1}$. $\overline{14}^{-1} = \overline{14}$ since $\overline{14} \cdot \overline{14} = \overline{196} = \overline{1}$. 4. Find all of the primitive roots for Z[×]₇. How many are there?
Solution: Z[×]₇ = {1, 2, 3, 4, 5, 6}.

 $\overline{2}$ is not a primitive root because the positive powers of $\overline{2}$ do not give us all of \mathbb{Z}_7^{\times} . Here are the first few positive powers of $\overline{2}$:

$$\overline{2}^{1} = \overline{2} \\
\overline{2}^{2} = \overline{4} \\
\overline{2}^{3} = \overline{1} \\
\overline{2}^{4} = \overline{2} \\
\overline{2}^{5} = \overline{4} \\
\overline{2}^{6} = \overline{1} \\
\vdots \vdots \vdots$$

Note how the powers keep repeating $\overline{2}$, $\overline{4}$, and $\overline{1}$ forever.

On the other hand, $\overline{3}$ is a primitive root because we get all of the elements of \mathbb{Z}_7^{\times} from the positive powers of $\overline{3}$ as we see below:

$$\overline{3}^{1} = \overline{3} \\
\overline{3}^{2} = \overline{2} \\
\overline{3}^{3} = \overline{6} \\
\overline{3}^{4} = \overline{4} \\
\overline{3}^{5} = \overline{5} \\
\overline{3}^{6} = \overline{1}$$

 $\overline{4}$ is not a primitive root because the positive powers of $\overline{4}$ do not give us all of \mathbb{Z}_7^{\times} . Here are the first few positive powers of $\overline{4}$:

Note how the powers keep repeating $\overline{4}$, $\overline{2}$, and $\overline{1}$ forever.

 $\overline{5}$ is a primitive root because we get all of the elements of \mathbb{Z}_7^{\times} from the positive powers of $\overline{5}$ as we see below:

$\overline{5}^{1}$	=	5
$\overline{5}^2$	=	4
$\overline{5}^3$	=	6
$\overline{5}^4$	=	$\overline{2}$
$\overline{5}^5$	=	
$\overline{5}^6$	=	1

 $\overline{6}$ is not a primitive root because the positive powers of $\overline{6}$ do not give us all of \mathbb{Z}_7^{\times} . Here are the first few positive powers of $\overline{6}$:

$$\overline{6}^{1} = \overline{6}$$

$$\overline{6}^{2} = \overline{1}$$

$$\overline{6}^{3} = \overline{6}$$

$$\overline{6}^{4} = \overline{1}$$

$$\overline{6}^{5} = \overline{6}$$

$$\overline{6}^{6} = \overline{1}$$

$$\vdots \qquad \vdots$$

Note how the powers keep repeating $\overline{6}$, $\overline{1}$ forever. Therefore, the only primitive roots in \mathbb{Z}_7^{\times} are $\overline{3}$ and $\overline{5}$.

- 5. Find all of the primitive roots for Z[×]₁₄. How many are there?
 Solution: Z[×]₁₄ = {1,3,5,9,11,13</sub>.
 The primitive roots are 3 and 5.
- 6. Find all of the primitive roots for Z₉[×]. How many are there?
 Solution: Z₉[×] = {1, 2, 4, 5, 7, 8}.
 The primitive roots are 2 and 5.
- 7. Find all of the primitive roots for \mathbb{Z}_{20}^{\times} . How many are there?

Solution: Recall that there exists a primitive root of \mathbb{Z}_n^{\times} if and only if n is of the form $n = 2, 4, p^k$, or $2p^l$ where p is an odd prime. Here we have that $n = 20 = 2^2 \cdot 5$. Therefore, \mathbb{Z}_{20}^{\times} has no primitive roots.

8. Reduce $\overline{7}^{103}$ in \mathbb{Z}_{13} .

Solution: Note that 13 is prime. Therefore, by Fermat's theorem, since gcd(7, 13) = 1 we have that $\overline{7}^{12} = \overline{7}^{13-1} = \overline{1}$ in \mathbb{Z}_{13} . Dividing 12 into 103 gives $103 = 8 \cdot 12 + 7$. Hence

$$\overline{7}^{103} = \overline{7}^{8 \cdot 12 + 7}$$

$$= (\overline{7}^{12})^8 \cdot \overline{7}^{2 + 2 + 2 + 1}$$

$$= \overline{1} \cdot \overline{49} \cdot \overline{49} \cdot \overline{49} \cdot \overline{7}$$

$$= \overline{10} \cdot \overline{10} \cdot \overline{10} \cdot \overline{7}$$

$$= \overline{7000}$$

Note that $7000 = 538 \cdot 13 + 6$. Hence

$$\overline{7}^{103} = \overline{7000} = \overline{538} \cdot \overline{13} + \overline{6} = \overline{538} \cdot \overline{0} + \overline{6} = \overline{6}$$

9. Reduce $\overline{5}^{127}$ in \mathbb{Z}_{12} .

Solution: Note that

$$\phi(12) = |\mathbb{Z}_{12}^{\times}| = |\{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}| = 4.$$

By Euler's theorem, since gcd(5, 12) = 1, we have that $\overline{5}^{\phi(12)} = \overline{5}^4 = \overline{1}$ in \mathbb{Z}_{12} . Dividing 4 into 127 gives $127 = 31 \cdot 4 + 3$. Hence

$$\overline{5}^{127} = \overline{5}^{31\cdot 4+3}$$
$$= (\overline{5}^4)^{31} \cdot \overline{5}^3$$
$$= \overline{1} \cdot \overline{125}$$
$$= \overline{125}$$

Note that $125 = 10 \cdot 12 + 5$. Hence

$$\overline{5}^{127} = \overline{125} = \overline{10} \cdot \overline{12} + \overline{5} = \overline{10} \cdot \overline{0} + \overline{5} = \overline{5}$$

10. (a) Let p be a prime and let $\overline{x} \in \mathbb{Z}_p^{\times}$. Prove that \overline{x}^{p-2} is the multiplicative inverse of \overline{x} in \mathbb{Z}_p^{\times} .

Solution: Suppose that $\overline{x} \in \mathbb{Z}_p^{\times}$. By Fermat's theorem, we have that $\overline{x}^{p-1} = \overline{1}$. Hence $\overline{x} \cdot \overline{x}^{p-2} = \overline{1}$. Therefore, the multiplicative inverse of \overline{x} is \overline{x}^{p-2} .

(b) Use (10a) to find the multiplicative inverse of 2 in Z₇.
Solution: By (10a), the multiplicative inverse of 2 is

$$\overline{2}^{7-2} = \overline{2}^5 = \overline{32} = \overline{4} \cdot \overline{7} + \overline{4} = \overline{4} \cdot \overline{0} + \overline{4} = \overline{4}.$$

(c) Use (10a) to find the multiplicative inverse of $\overline{3}$ in \mathbb{Z}_{11} . Solution: By (10a), the multiplicative inverse of $\overline{3}$ is

$$\overline{3}^{11-2} = \overline{3}^9 = \overline{3}^3 \cdot \overline{3}^3 \cdot \overline{3}^3 = \overline{27} \cdot \overline{27} \cdot \overline{27} = \overline{5} \cdot \overline{5} \cdot \overline{5}$$
$$= \overline{125} = \overline{11} \cdot \overline{11} + \overline{4} = \overline{0} \cdot \overline{0} + \overline{4} = \overline{4}$$

11. Let p be a prime and let m and n be positive integers. Let $\overline{a} \in \mathbb{Z}_p^{\times}$. Prove that if $m \equiv n \pmod{p-1}$, then $\overline{a}^m = \overline{a}^n$ in \mathbb{Z}_p^{\times} .

Solution: Let $\overline{a} \in \mathbb{Z}_p^{\times}$. By Fermat's theorem, $\overline{a}^{p-1} = \overline{1}$ in \mathbb{Z}_p^{\times} . Since $m \equiv n \pmod{p-1}$ we have that m = n + (p-1)k for some integer k. Therefore

$$\overline{a}^m = \overline{a}^{n+(p-1)k} = \overline{a}^n \cdot (\overline{a}^{p-1})^k = \overline{a}^n \cdot \overline{1}^k = \overline{a}^n.$$

Hence $\overline{a}^m = \overline{a}^n$.

12. Prove that $a^{6k} - 1$ is divisible by 7 for any positive integer a with gcd(a,7) = 1.

Solution: Let *a* be an integer with gcd(a, 7) = 1. Since 7 is prime, by Fermat, we have that $\overline{1} = \overline{a}^{7-1} = \overline{a}^6$. Hence

$$\overline{a^{6k} - 1} = (\overline{a}^6)^k + \overline{-1} = \overline{1} + \overline{-1} = \overline{0}.$$

Thus $\overline{a^{6k} - 1} = \overline{0}$ in \mathbb{Z}_7^{\times} . Therefore, 7 divides $a^{6k} - 1$.

13. Prove that 19 is not a divisor of $4n^2 + 4$ for any integer n.

Solution: Suppose that 19 is a divisor of $4n^2 + 4$. We will show that this leads to a contradiction. Since 19 divides $4n^2 + 4$ we have that $4n^2 + 4 \equiv 0 \pmod{19}$. In \mathbb{Z}_{19} this gives us that

$$\overline{4n^2 + 4} = \overline{0}.$$

Hence

$$\overline{4} \cdot \overline{n}^2 + \overline{4} = \overline{0}.$$

Adding $\overline{15}$ to both sides we have that

$$\overline{4} \cdot \overline{n}^2 = \overline{15}.$$

Multiplying both sides by $\overline{4}^{-1} = \overline{5}$ we have that

$$\overline{5} \cdot \overline{4} \cdot \overline{n}^2 = \overline{5} \cdot \overline{15}.$$

 So

 $\overline{20} \cdot \overline{n}^2 = \overline{75}.$

Thus

$$\overline{n}^2 = \overline{3 \cdot 19 + 18}.$$

 So

$$\overline{n}^2 = \overline{3} \cdot \overline{19} + \overline{18} = \overline{3} \cdot \overline{0} + \overline{18} = \overline{18}.$$

We now show that $\overline{n}^2 = \overline{18}$ has no solutions in \mathbb{Z}_{19} . Here is the check:

$$\overline{1}^{2} = \overline{1} \\
\overline{2}^{2} = \overline{4} \\
\overline{3}^{2} = \overline{9} \\
\overline{4}^{2} = \overline{16} \\
\overline{5}^{2} = \overline{6} \\
\overline{6}^{2} = \overline{17} \\
\overline{7}^{2} = \overline{11} \\
\overline{8}^{2} = \overline{7} \\
\overline{7}^{2} = \overline{5} \\
\overline{10}^{2} = \overline{5} \\
\overline{10}^{2} = \overline{5} \\
\overline{11}^{2} = \overline{7} \\
\overline{12}^{2} = \overline{11} \\
\overline{13}^{2} = \overline{17} \\
\overline{14}^{2} = \overline{6} \\
\overline{15}^{2} = \overline{16} \\
\overline{16}^{2} = \overline{9} \\
\overline{17}^{2} = \overline{4} \\
\overline{18}^{2} = \overline{1} \\
\overline{18}^{2} = \overline$$

Thus we have a contradiction.

- 14. Let n be an integer with $n \ge 2$.
 - (a) Let a be an integer with gcd(a, n) = 1. Suppose that a ⋅ b = a ⋅ c in Z_n. Prove that b = c.
 Solution: Suppose that gcd(a, n) = 1 and a ⋅ b = a ⋅ c. Since gcd(a, n) = 1 we know that a ∈ Z_n[×]. Therefore, a⁻¹ exists. So, a⁻¹ ⋅ a ⋅ b = a⁻¹ ⋅ a ⋅ c. Thus, b = c.
 - (b) Let a be an integer with gcd(a, n) = 1. Prove that

$$\overline{a} \cdot \mathbb{Z}_n = \{\overline{a} \cdot \overline{0}, \overline{a} \cdot \overline{1}, \overline{a} \cdot \overline{2}, \cdots, \overline{a} \cdot (n-1)\}$$

is equal to \mathbb{Z}_n .

Solution: Since gcd(a, n) = 1 we know that \overline{a}^{-1} exists in \mathbb{Z}_n . We now show that $\overline{a} \cdot \mathbb{Z}_n = \mathbb{Z}_n$. We do this by showing that $\overline{a} \cdot \mathbb{Z}_n \subseteq \mathbb{Z}_n$ and $\mathbb{Z}_n \subseteq \overline{a} \cdot \mathbb{Z}_n$. Let $\overline{x} \in \overline{a} \cdot \mathbb{Z}_n$. Then $\overline{x} = \overline{a} \cdot \overline{y}$ where $\overline{y} \in \mathbb{Z}_n$. Then $\overline{x} = \overline{a} \cdot \overline{y} \in \mathbb{Z}_n$. Hence $\overline{a} \cdot \mathbb{Z}_n \subseteq \mathbb{Z}_n$.

Let $\overline{s} \in \mathbb{Z}_n$. Since $\overline{s} = \overline{a} \cdot (\overline{a}^{-1} \cdot \overline{s})$ and $\overline{a}^{-1} \cdot \overline{s} \in \mathbb{Z}_n$ we have that $\overline{s} \in \overline{a} \cdot \mathbb{Z}_n$. Hence $\mathbb{Z}_n \subseteq \overline{a} \cdot \mathbb{Z}_n$.

- (c) Give an example showing that if $gcd(a, n) \neq 1$ then one can have $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{c}$ in \mathbb{Z}_n , but $\overline{b} \neq \overline{c}$. Solution: $\overline{2} \cdot \overline{4} = \overline{2} \cdot \overline{1}$ in \mathbb{Z}_6 .
- 15. Prove that if $a \equiv b \pmod{n}$ then gcd(a, n) = gcd(b, n).

Solution: Since $a \equiv b \pmod{n}$ we have that a = b + qn for some integer q. Let $d = \gcd(a, n)$ and $d' = \gcd(b, n)$.

Since $d' = \gcd(b, n)$ we have that d'|b and d'|n. Hence $d'k_1 = b$ and $d'k_2 = n$ for some integers k_1, k_2 . Thus $a = b + qn = d'k_1 + qd'k_2 = d'(k_1 + qk_2)$. So d'|a. So d' is a common divisor of a and n. Since $\gcd(a, n) = d$ we must have that $d' \leq d$.

Since $d = \gcd(a, n)$ we have that d|a and d|n. Hence $dt_1 = a$ and $dt_2 = n$ for some integers t_1, t_2 . Thus $b = a - qn = dt_1 - qdt_2 = d(t_1 - qt_2)$. So d|b. So d is a common divisor of b and n. Since $\gcd(b, n) = d'$ we must have that $d \leq d'$.

Since $d' \leq d$ and $d \leq d'$ we have that d = d'.