Math 446 - Homework \# 5

1. List the elements of \mathbb{Z}_{7}^{\times}. For each element find it's multiplicative inverse.
2. List the elements of \mathbb{Z}_{8}^{\times}. For each element find it's multiplicative inverse.
3. List the elements of \mathbb{Z}_{15}^{\times}. For each element find it's multiplicative inverse.
4. Find all of the primitive roots for \mathbb{Z}_{7}^{\times}. How many are there?
5. Find all of the primitive roots for \mathbb{Z}_{14}^{\times}. How many are there?
6. Find all of the primitive roots for \mathbb{Z}_{9}^{\times}. How many are there?
7. Find all of the primitive roots for \mathbb{Z}_{20}^{\times}. How many are there?
8. Reduce $\overline{7}^{103}$ in \mathbb{Z}_{13}.
9. Reduce $\overline{5}^{127}$ in \mathbb{Z}_{12}.
10. (a) Let p be a prime and let $\bar{x} \in \mathbb{Z}_{p}^{\times}$. Prove that \bar{x}^{p-2} is the multiplicative inverse of \bar{x} in \mathbb{Z}_{p}^{\times}.
(b) Use (10a) to find the multiplicative inverse of $\overline{2}$ in \mathbb{Z}_{7}.
(c) Use (10a) to find the multiplicative inverse of $\overline{3}$ in \mathbb{Z}_{11}.
11. Let p be a prime and let m and n be positive integers. Let $\bar{a} \in \mathbb{Z}_{p}^{\times}$. Prove that if $m \equiv n(\bmod p-1)$, then $\bar{a}^{m}=\bar{a}^{n}$ in \mathbb{Z}_{p}^{\times}.
12. Prove that $a^{6 k}-1$ is divisible by 7 for any positive integer a with $\operatorname{gcd}(a, 7)=1$.
13. Prove that 19 is not a divisor of $4 n^{2}+4$ for any integer n.
14. Let n be an integer with $n \geq 2$.
(a) Let a be an integer with $\operatorname{gcd}(a, n)=1$. Suppose that $\bar{a} \cdot \bar{b}=\bar{a} \cdot \bar{c}$ in \mathbb{Z}_{n}. Prove that $\bar{b}=\bar{c}$.
(b) Let a be an integer with $\operatorname{gcd}(a, n)=1$. Prove that

$$
\bar{a} \cdot \mathbb{Z}_{n}=\{\bar{a} \cdot \overline{0}, \bar{a} \cdot \overline{1}, \bar{a} \cdot \overline{2}, \cdots, \bar{a} \cdot \overline{n-1}\}
$$

is equal to \mathbb{Z}_{n}.
(c) Give an example showing that if $\operatorname{gcd}(a, n) \neq 1$ then one can have $\bar{a} \cdot \bar{b}=\bar{a} \cdot \bar{c}$ in \mathbb{Z}_{n}, but $\bar{b} \neq \bar{c}$.
15. Prove that if $a \equiv b(\bmod n)$ then $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.

