Math 446 - Homework # 5

- 1. List the elements of $\mathbb{Z}_7^{\times}.$ For each element find it's multiplicative inverse.
- 2. List the elements of $\mathbb{Z}_8^{\times}.$ For each element find it's multiplicative inverse.
- 3. List the elements of \mathbb{Z}_{15}^{\times} . For each element find it's multiplicative inverse.
- 4. Find all of the primitive roots for \mathbb{Z}_7^{\times} . How many are there?
- 5. Find all of the primitive roots for \mathbb{Z}_{14}^{\times} . How many are there?
- 6. Find all of the primitive roots for \mathbb{Z}_9^{\times} . How many are there?
- 7. Find all of the primitive roots for \mathbb{Z}_{20}^{\times} . How many are there?
- 8. Reduce $\overline{7}^{103}$ in \mathbb{Z}_{13} .
- 9. Reduce $\overline{5}^{127}$ in \mathbb{Z}_{12} .
- 10. (a) Let p be a prime and let $\overline{x} \in \mathbb{Z}_p^{\times}$. Prove that \overline{x}^{p-2} is the multiplicative inverse of \overline{x} in \mathbb{Z}_p^{\times} .
 - (b) Use (10a) to find the multiplicative inverse of $\overline{2}$ in \mathbb{Z}_7 .
 - (c) Use (10a) to find the multiplicative inverse of $\overline{3}$ in \mathbb{Z}_{11} .
- 11. Let p be a prime and let m and n be positive integers. Let $\overline{a} \in \mathbb{Z}_p^{\times}$. Prove that if $m \equiv n \pmod{p-1}$, then $\overline{a}^m = \overline{a}^n$ in \mathbb{Z}_p^{\times} .
- 12. Prove that $a^{6k} 1$ is divisible by 7 for any positive integer a with gcd(a, 7) = 1.
- 13. Prove that 19 is not a divisor of $4n^2 + 4$ for any integer n.
- 14. Let n be an integer with $n \ge 2$.
 - (a) Let a be an integer with gcd(a, n) = 1. Suppose that $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{c}$ in \mathbb{Z}_n . Prove that $\overline{b} = \overline{c}$.

(b) Let a be an integer with gcd(a, n) = 1. Prove that

$$\overline{a} \cdot \mathbb{Z}_n = \{\overline{a} \cdot \overline{0}, \overline{a} \cdot \overline{1}, \overline{a} \cdot \overline{2}, \cdots, \overline{a} \cdot \overline{n-1}\}$$

is equal to \mathbb{Z}_n .

- (c) Give an example showing that if $gcd(a, n) \neq 1$ then one can have $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{c}$ in \mathbb{Z}_n , but $\overline{b} \neq \overline{c}$.
- 15. Prove that if $a \equiv b \pmod{n}$ then gcd(a, n) = gcd(b, n).