Math 2550
 HW 5 - Part 2
 Determinants

1. Show that the following statements are not necessarily true by giving an example that shows that they can sometimes be false.
In the statements, A and B are square matrices of the same size, and I is the identity matrix.
(a) The deteminant of $I+A$ is $1+A$.
(b) $\operatorname{det}(A B-B A)=0$
(c) The determinant of $4 A$ is $4 \cdot \operatorname{det}(A)$
(d) $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
2. Show that the following statements are always true by proving it.
(a) Let A be a 2×2 matrix and α be a real number. Prove that

$$
\operatorname{det}(\alpha \cdot A)=\alpha^{2} \cdot \operatorname{det}(A)
$$

(b) Let A and B be 2×2 matrices. Prove that

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

3. Let $A=\left(\begin{array}{lll}a & b & c \\ 0 & 0 & d \\ 0 & 0 & e\end{array}\right)$ where a, b, c, d, e are non-zero numbers.

Show that $\operatorname{det}(A)=0$.
4. Find a value of k such that the matrix $A=\left(\begin{array}{lll}1 & k & 1 \\ 2 & 1 & 2 \\ 1 & 0 & k\end{array}\right)$ is not invertible.

