Math 5800
 Homework \# 5
 More 4650 Review

1. Let $S \subseteq \mathbb{R}$ with $S \neq \emptyset$. Let $b \in \mathbb{R}$. Prove that b is the infimum of S if and only if the following two conditions hold:
(i) b is a lower bound for S, and
(ii) for every $\epsilon>0$ there exists $x \in S$ with $b \leq x<b+\epsilon$

Hint: To prove the above use the fact that b is the supremum of S if and only if (i) b is a lower bound for S and (ii) if c is any other lower bound for S then $c \leq b$ (ie, b is the greatest lower bound for S).
If you want more practice, you could prove the similar statement from class about the supremum of a set S.
2. (Monotone Convergence Theorem) Prove: If $\left(a_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence that is bounded from above, then $\left(a_{n}\right)_{n=1}^{\infty}$ converges.

Recall: $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded from above if there exists $M>0$ such that $a_{n} \leq M$ for all $n \geq 1$.

Hint: To do this problem, first demonstrate that

$$
S=\left\{a_{k} \mid k=1,2,3,4, \ldots\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}
$$

is bounded from above. Then prove that

$$
\lim _{n \rightarrow \infty} a_{n}=\sup (S)
$$

To do this use the property that b is the supremum of S if (i) b is an upper bound for S, and (ii) for every $\epsilon>0$ there exists $x \in S$ with $b-\epsilon<x \leq b$.
Note: If you want more practice, then you could prove the similar statement for bounded non-increasing sequences that we stated in class.

