Math 465 - Homework # 5 Open and closed sets

- 1. Prove that \mathbb{R} is an open set.
- 2. Prove that the empty set \emptyset is an open set.
- 3. Let A and B be open subsets of \mathbb{R} .
 - (a) Prove that $A \cap B$ is open.
 - (b) Prove that $A \cup B$ is open.
- 4. Let A and B be closed subsets of \mathbb{R} .
 - (a) Prove that $A \cap B$ is closed.
 - (b) Prove that $A \cup B$ is closed.
- 5. Prove the following. Let a and b be real numbers.
 - (a) Prove that $(-\infty, a)$ is an open set.
 - (b) Prove that (b, ∞) is an open set.
 - (c) If a < b, then [a, b] is a closed set.
 - (d) Prove that $[a, \infty)$ is closed.
 - (e) Prove that $(-\infty, b]$ is closed.
- 6. Let x_1, x_2, \ldots, x_n be real numbers. Let S be the finite set $S = \{x_1, x_2, \ldots, x_n\}$.
 - (a) Prove that S is closed.
 - (b) Prove that S has no limit points.
- 7. Give an example of an open set A and a limit point x of A such that $x \notin A$.
- 8. Give an example of an infinite family of open sets A_n such that $\bigcap_n A_n$ is not open.
- 9. Give an example of an infinite family of closed sets B_n such that $\cup_n B_n$ is not closed.
- 10. Let $D \subseteq \mathbb{R}$. Suppose that D is closed and bounded. Prove that $a = \inf(D)$ and $b = \sup(D)$ exist and $a \in D$ and $b \in D$.