Math 465 - Homework \# 5
 Open and closed sets

1. Prove that \mathbb{R} is an open set.
2. Prove that the empty set \emptyset is an open set.
3. Let A and B be open subsets of \mathbb{R}.
(a) Prove that $A \cap B$ is open.
(b) Prove that $A \cup B$ is open.
4. Let A and B be closed subsets of \mathbb{R}.
(a) Prove that $A \cap B$ is closed.
(b) Prove that $A \cup B$ is closed.
5. Prove the following. Let a and b be real numbers.
(a) Prove that $(-\infty, a)$ is an open set.
(b) Prove that (b, ∞) is an open set.
(c) If $a<b$, then $[a, b]$ is a closed set.
(d) Prove that $[a, \infty)$ is closed.
(e) Prove that $(-\infty, b]$ is closed.
6. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers. Let S be the finite set $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
(a) Prove that S is closed.
(b) Prove that S has no limit points.
7. Give an example of an open set A and a limit point x of A such that $x \notin A$.
8. Give an example of an infinite family of open sets A_{n} such that $\cap_{n} A_{n}$ is not open.
9. Give an example of an infinite family of closed sets B_{n} such that $\cup_{n} B_{n}$ is not closed.
10. Let $D \subseteq \mathbb{R}$. Suppose that D is closed and bounded. Prove that $a=$ $\inf (D)$ and $b=\sup (D)$ exist and $a \in D$ and $b \in D$.
