Math 456
 Homework \# 5 - Ideals

1. List 5 elements from the ideal $\left\langle x^{2}+\overline{1}\right\rangle$ in $\mathbb{Z}_{3}[x]$.
2. Which of the following are ideals of $\mathbb{Z} \times \mathbb{Z}$?
(a) $\{(a, a) \mid a \in \mathbb{Z}\}$
(b) $\{(2 a, 3 b) \mid a, b \in \mathbb{Z}\}$
(c) $\{(a, 0) \mid a \in \mathbb{Z}\}$
(d) $\{(a,-a) \mid a \in \mathbb{Z}\}$
3. Prove that $I=\{(\overline{0}, \overline{0}),(\overline{0}, \overline{1}),(\overline{0}, \overline{2})\}$ is an ideal of the $\operatorname{ring} R=\mathbb{Z}_{2} \times \mathbb{Z}_{3}$.
4.

(a) Prove that every ideal of \mathbb{Z}_{n} is principal. That is each ideal is of the form

$$
\langle\bar{k}\rangle=\{\overline{0}, \bar{k}, \overline{2 k}, \overline{3 k}, \ldots, \overline{(n-1) k}\}
$$

where $\bar{k} \in \mathbb{Z}_{n}$.
(b) Find all the ideals of \mathbb{Z}_{6}.
(c) Find all the ideals of \mathbb{Z}_{8}.
(d) Calculate the ideals $\langle\overline{13}\rangle$ and $\langle\overline{2}\rangle$ of \mathbb{Z}_{26}.
5. Determine which of the sets below is an ideals of $M_{2}(\mathbb{R})$.
(a)

$$
\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}
$$

(b)

$$
\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}
$$

6. Let R and R^{\prime} be rings. Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism.
(a) Prove that $\operatorname{ker}(\phi)$ is a an ideal of R.
(b) Suppose that ϕ is onto. Prove that $\phi(R)=\{\phi(x) \mid x \in R\}$ is an ideal of R^{\prime}.
7. Let R be a ring with additive identity denoted by 0 . Show that $\{0\}$ and R are ideals of R.
8. Let I be an ideal of a ring R. Show that I is a subring of R.
9. Let R be a commutative ring with additive identity 0 and multiplicative identity 1 with $1 \neq 0$. Let $a \in R$. Prove that $\langle a\rangle=\{r a \mid r \in R\}$ is an ideal of R.
10. Let $R=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$. Show that

$$
I=\{(\overline{0}, \overline{0}),(\overline{2}, \overline{0}),(\overline{0}, \overline{2}),(\overline{2}, \overline{2})\}
$$

is a principal ideal of R.

